BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 28356514)

  • 21. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma.
    Karaca Atabay E; Mecca C; Wang Q; Ambrogio C; Mota I; Prokoph N; Mura G; Martinengo C; Patrucco E; Leonardi G; Hossa J; Pich A; Mologni L; Gambacorti-Passerini C; Brugières L; Geoerger B; Turner SD; Voena C; Cheong TC; Chiarle R
    Blood; 2022 Feb; 139(5):717-731. PubMed ID: 34657149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel model of alternative NF-κB pathway activation in anaplastic large cell lymphoma.
    Wang H; Wei W; Zhang JP; Song Z; Li Y; Xiao W; Liu Y; Zeng MS; Petrus MN; Thomas CJ; Kadin ME; Nakagawa M; Waldmann TA; Yang Y
    Leukemia; 2021 Jul; 35(7):1976-1989. PubMed ID: 33184494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway.
    Chen X; Yang W; Deng X; Ye S; Xiao W
    Mol Vis; 2020; 26():517-529. PubMed ID: 32818015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brefeldin A exerts differential effects on anaplastic lymphoma kinase positive anaplastic large cell lymphoma and classical Hodgkin lymphoma cell lines.
    Toda T; Watanabe M; Kawato J; Kadin ME; Higashihara M; Kunisada T; Umezawa K; Horie R
    Br J Haematol; 2015 Sep; 170(6):837-46. PubMed ID: 26105086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IL-21 contributes to JAK3/STAT3 activation and promotes cell growth in ALK-positive anaplastic large cell lymphoma.
    Dien Bard J; Gelebart P; Anand M; Zak Z; Hegazy SA; Amin HM; Lai R
    Am J Pathol; 2009 Aug; 175(2):825-34. PubMed ID: 19608866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein.
    Pearson JD; Mohammed Z; Bacani JT; Lai R; Ingham RJ
    BMC Cancer; 2012 Jun; 12():229. PubMed ID: 22681779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling.
    Song L; Rawal B; Nemeth JA; Haura EB
    Mol Cancer Ther; 2011 Mar; 10(3):481-94. PubMed ID: 21216930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. β-catenin is constitutively active and increases STAT3 expression/activation in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma.
    Anand M; Lai R; Gelebart P
    Haematologica; 2011 Feb; 96(2):253-61. PubMed ID: 20971814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics.
    Waldmann TA
    Mol Cell Endocrinol; 2017 Aug; 451():66-70. PubMed ID: 28214593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma.
    Zhang J; Wang P; Wu F; Li M; Sharon D; Ingham RJ; Hitt M; McMullen TP; Lai R
    Cell Signal; 2012 Apr; 24(4):852-8. PubMed ID: 22155737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer.
    Wen W; Liang W; Wu J; Kowolik CM; Buettner R; Scuto A; Hsieh MY; Hong H; Brown CE; Forman SJ; Horne D; Morgan R; Wakabayashi M; Dellinger TH; Han ES; Yim JH; Jove R
    Mol Cancer Ther; 2014 Dec; 13(12):3037-48. PubMed ID: 25319391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia.
    Maude SL; Tasian SK; Vincent T; Hall JW; Sheen C; Roberts KG; Seif AE; Barrett DM; Chen IM; Collins JR; Mullighan CG; Hunger SP; Harvey RC; Willman CL; Fridman JS; Loh ML; Grupp SA; Teachey DT
    Blood; 2012 Oct; 120(17):3510-8. PubMed ID: 22955920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas.
    Boi M; Zucca E; Inghirami G; Bertoni F
    Br J Haematol; 2015 Mar; 168(6):771-83. PubMed ID: 25559471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic inhibition of Jak activity inhibits progression of gastrointestinal tumors in mice.
    Stuart E; Buchert M; Putoczki T; Thiem S; Farid R; Elzer J; Huszar D; Waring PM; Phesse TJ; Ernst M
    Mol Cancer Ther; 2014 Feb; 13(2):468-74. PubMed ID: 24398427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoration of shp1 expression by 5-AZA-2'-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma.
    Han Y; Amin HM; Frantz C; Franko B; Lee J; Lin Q; Lai R
    Leukemia; 2006 Sep; 20(9):1602-9. PubMed ID: 16871283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma.
    Mastini C; Campisi M; Patrucco E; Mura G; Ferreira A; Costa C; Ambrogio C; Germena G; Martinengo C; Peola S; Mota I; Vissio E; Molinaro L; Arigoni M; Olivero M; Calogero R; Prokoph N; Tabbò F; Shoji B; Brugieres L; Geoerger B; Turner SD; Cuesta-Mateos C; D'Aliberti D; Mologni L; Piazza R; Gambacorti-Passerini C; Inghirami GG; Chiono V; Kamm RD; Hirsch E; Koch R; Weinstock DM; Aster JC; Voena C; Chiarle R
    Sci Transl Med; 2023 Jun; 15(702):eabo3826. PubMed ID: 37379367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ALK inhibitors, alectinib and ceritinib, induce ALK-independent and STAT3-dependent glioblastoma cell death.
    Kawauchi D; Takahashi M; Satomi K; Yamamuro S; Kobayashi T; Uchida E; Honda-Kitahara M; Narita Y; Iwadate Y; Ichimura K; Tomiyama A
    Cancer Sci; 2021 Jun; 112(6):2442-2453. PubMed ID: 33728771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support.
    Li J; Favata M; Kelley JA; Caulder E; Thomas B; Wen X; Sparks RB; Arvanitis A; Rogers JD; Combs AP; Vaddi K; Solomon KA; Scherle PA; Newton R; Fridman JS
    Neoplasia; 2010 Jan; 12(1):28-38. PubMed ID: 20072651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth.
    Hoareau-Aveilla C; Valentin T; Daugrois C; Quelen C; Mitou G; Quentin S; Jia J; Spicuglia S; Ferrier P; Ceccon M; Giuriato S; Gambacorti-Passerini C; Brousset P; Lamant L; Meggetto F
    J Clin Invest; 2015 Sep; 125(9):3505-18. PubMed ID: 26258416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Cell Proteomic Profiling Identifies Combined AXL and JAK1 Inhibition as a Novel Therapeutic Strategy for Lung Cancer.
    Taverna JA; Hung CN; DeArmond DT; Chen M; Lin CL; Osmulski PA; Gaczynska ME; Wang CM; Lucio ND; Chou CW; Chen CL; Nazarullah A; Lampkin SR; Qiu L; Bearss DJ; Warner S; Whatcott CJ; Mouritsen L; Wade M; Weitman S; Mesa RA; Kirma NB; Chao WT; Huang TH
    Cancer Res; 2020 Apr; 80(7):1551-1563. PubMed ID: 31992541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.