BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 28356527)

  • 1. Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis.
    Bardina SV; Brown JA; Michlmayr D; Hoffman KW; Sum J; Pletnev AG; Lira SA; Lim JK
    J Virol; 2017 May; 91(10):. PubMed ID: 28356527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection.
    Bardina SV; Michlmayr D; Hoffman KW; Obara CJ; Sum J; Charo IF; Lu W; Pletnev AG; Lim JK
    J Immunol; 2015 Nov; 195(9):4306-18. PubMed ID: 26401006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system.
    Durrant DM; Daniels BP; Pasieka T; Dorsey D; Klein RS
    J Neuroinflammation; 2015 Dec; 12():233. PubMed ID: 26667390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Tissue-Specific CD8
    Aguilar-Valenzuela R; Netland J; Seo YJ; Bevan MJ; Grakoui A; Suthar MS
    J Virol; 2018 May; 92(10):. PubMed ID: 29514902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system.
    Shrestha B; Zhang B; Purtha WE; Klein RS; Diamond MS
    J Virol; 2008 Sep; 82(18):8956-64. PubMed ID: 18632856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.
    Gorman MJ; Poddar S; Farzan M; Diamond MS
    J Virol; 2016 Sep; 90(18):8212-25. PubMed ID: 27384652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis.
    Zhang B; Chan YK; Lu B; Diamond MS; Klein RS
    J Immunol; 2008 Feb; 180(4):2641-9. PubMed ID: 18250476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system.
    Sitati EM; Diamond MS
    J Virol; 2006 Dec; 80(24):12060-9. PubMed ID: 17035323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons.
    Shrestha B; Pinto AK; Green S; Bosch I; Diamond MS
    J Virol; 2012 Sep; 86(17):8937-48. PubMed ID: 22740407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STING is required for host defense against neuropathological West Nile virus infection.
    McGuckin Wuertz K; Treuting PM; Hemann EA; Esser-Nobis K; Snyder AG; Graham JB; Daniels BP; Wilkins C; Snyder JM; Voss KM; Oberst A; Lund J; Gale M
    PLoS Pathog; 2019 Aug; 15(8):e1007899. PubMed ID: 31415679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis.
    Zhao J; Vijay R; Zhao J; Gale M; Diamond MS; Perlman S
    J Virol; 2016 Aug; 90(16):7098-7108. PubMed ID: 27226371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. West Nile Virus spread and differential chemokine response in the central nervous system of mice: Role in pathogenic mechanisms of encephalitis.
    Vidaña B; Johnson N; Fooks AR; Sánchez-Cordón PJ; Hicks DJ; Nuñez A
    Transbound Emerg Dis; 2020 Mar; 67(2):799-810. PubMed ID: 31655004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis.
    Wang Y; Lobigs M; Lee E; Müllbacher A
    J Virol; 2003 Dec; 77(24):13323-34. PubMed ID: 14645588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis.
    Sitati E; McCandless EE; Klein RS; Diamond MS
    J Virol; 2007 Sep; 81(18):9801-11. PubMed ID: 17626103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus.
    Diamond MS; Shrestha B; Marri A; Mahan D; Engle M
    J Virol; 2003 Feb; 77(4):2578-86. PubMed ID: 12551996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD22 is required for protection against West Nile virus Infection.
    Ma DY; Suthar MS; Kasahara S; Gale M; Clark EA
    J Virol; 2013 Mar; 87(6):3361-75. PubMed ID: 23302871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection.
    Thackray LB; Shrestha B; Richner JM; Miner JJ; Pinto AK; Lazear HM; Gale M; Diamond MS
    J Virol; 2014 Oct; 88(19):11007-21. PubMed ID: 25031348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection.
    Ramos HJ; Lanteri MC; Blahnik G; Negash A; Suthar MS; Brassil MM; Sodhi K; Treuting PM; Busch MP; Norris PJ; Gale M
    PLoS Pathog; 2012; 8(11):e1003039. PubMed ID: 23209411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis.
    Durrant DM; Daniels BP; Klein RS
    J Immunol; 2014 Oct; 193(8):4095-106. PubMed ID: 25200953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system.
    Lazear HM; Pinto AK; Ramos HJ; Vick SC; Shrestha B; Suthar MS; Gale M; Diamond MS
    J Virol; 2013 Nov; 87(21):11401-15. PubMed ID: 23966390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.