These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28356604)

  • 41.  Importance of the C
    Platel R; Chaveriat L; Le Guenic S; Pipeleers R; Magnin-Robert M; Randoux B; Trapet P; Lequart V; Joly N; Halama P; Martin P; Höfte M; Reignault P; Siah A
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33374771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The impact of Septoria tritici Blotch disease on wheat: An EU perspective.
    Fones H; Gurr S
    Fungal Genet Biol; 2015 Jun; 79():3-7. PubMed ID: 26092782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles.
    Palma-Guerrero J; Torriani SF; Zala M; Carter D; Courbot M; Rudd JJ; McDonald BA; Croll D
    Mol Plant Pathol; 2016 Aug; 17(6):845-59. PubMed ID: 26610174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light.
    McCorison CB; Goodwin SB
    BMC Genomics; 2020 Jul; 21(1):513. PubMed ID: 32711450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of Zymoseptoria tritici on Wheat.
    Lee WS; Devonshire BJ; Hammond-Kosack KE; Rudd JJ; Kanyuka K
    Mol Plant Microbe Interact; 2015 May; 28(5):590-604. PubMed ID: 25496594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola).
    Poppe S; Dorsheimer L; Happel P; Stukenbrock EH
    PLoS Pathog; 2015 Jul; 11(7):e1005055. PubMed ID: 26225424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A large bioassay identifies
    Tidd H; Rudd JJ; Ray RV; Bryant R; Kanyuka K
    Front Plant Sci; 2022; 13():1070986. PubMed ID: 36699841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence of Selection for Fungicide Resistance in Zymoseptoria tritici Populations on Wheat in Western Oregon.
    Hayes LE; Sackett KE; Anderson NP; Flowers MD; Mundt CC
    Plant Dis; 2016 Feb; 100(2):483-489. PubMed ID: 30694133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The wheat-Septoria conflict: a new front opening up?
    O'Driscoll A; Kildea S; Doohan F; Spink J; Mullins E
    Trends Plant Sci; 2014 Sep; 19(9):602-10. PubMed ID: 24957882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen
    Habig M; Quade J; Stukenbrock EH
    mBio; 2017 Nov; 8(6):. PubMed ID: 29184021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The
    Tiley AMM; White HJ; Foster GD; Bailey AM
    Front Microbiol; 2019; 10():2210. PubMed ID: 31632366
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-stage resistance to
    Yang N; Ovenden B; Baxter B; McDonald MC; Solomon PS; Milgate A
    Front Plant Sci; 2022; 13():990915. PubMed ID: 36352863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch.
    McDonald BA; Mundt CC
    Phytopathology; 2016 Sep; 106(9):948-55. PubMed ID: 27111799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extracellular vesicles from the apoplastic fungal wheat pathogen
    Hill EH; Solomon PS
    Fungal Biol Biotechnol; 2020; 7():13. PubMed ID: 32968488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici.
    Mirzadi Gohari A; Ware SB; Wittenberg AH; Mehrabi R; Ben M'Barek S; Verstappen EC; van der Lee TA; Robert O; Schouten HJ; de Wit PP; Kema GH
    Mol Plant Pathol; 2015 Dec; 16(9):931-45. PubMed ID: 25727413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overview of genomic and bioinformatic resources for Zymoseptoria tritici.
    Testa A; Oliver R; Hane J
    Fungal Genet Biol; 2015 Jun; 79():13-6. PubMed ID: 26092784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative Transcriptome Analyses in Zymoseptoria tritici Reveal Significant Differences in Gene Expression Among Strains During Plant Infection.
    Palma-Guerrero J; Ma X; Torriani SF; Zala M; Francisco CS; Hartmann FE; Croll D; McDonald BA
    Mol Plant Microbe Interact; 2017 Mar; 30(3):231-244. PubMed ID: 28121239
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity.
    Hassine M; Siah A; Hellin P; Cadalen T; Halama P; Hilbert JL; Hamada W; Baraket M; Yahyaoui A; Legrève A; Duvivier M
    Fungal Biol; 2019 Oct; 123(10):763-772. PubMed ID: 31542193
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.
    Karisto P; Hund A; Yu K; Anderegg J; Walter A; Mascher F; McDonald BA; Mikaberidze A
    Phytopathology; 2018 May; 108(5):568-581. PubMed ID: 29210601
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accurate Assessment of Wheat and Triticale Cultivar Resistance to Septoria tritici and Stagonospora nodorum Infection by Biotin/Avidin ELISA.
    Tian S; Wolf GA; Weinert J
    Plant Dis; 2005 Nov; 89(11):1229-1234. PubMed ID: 30786448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.