These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28357056)

  • 21. Evolution of insect wings and development - new details from Palaeozoic nymphs.
    Haug JT; Haug C; Garwood RJ
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):53-69. PubMed ID: 25400084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-option of wing-patterning genes underlies the evolution of the treehopper helmet.
    Fisher CR; Wegrzyn JL; Jockusch EL
    Nat Ecol Evol; 2020 Feb; 4(2):250-260. PubMed ID: 31819237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AERODYNAMICS, THERMOREGULATION, AND THE EVOLUTION OF INSECT WINGS: DIFFERENTIAL SCALING AND EVOLUTIONARY CHANGE.
    Kingsolver JG; Koehl MAR
    Evolution; 1985 May; 39(3):488-504. PubMed ID: 28561970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods.
    Fisher CR; Kratovil JD; Angelini DR; Jockusch EL
    Proc Biol Sci; 2021 Dec; 288(1965):20211808. PubMed ID: 34933597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conservation and variation in Hox genes: how insect models pioneered the evo-devo field.
    Heffer A; Pick L
    Annu Rev Entomol; 2013; 58():161-79. PubMed ID: 23317041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypothesis testing in evolutionary developmental biology: a case study from insect wings.
    Jockusch EL; Ober KA
    J Hered; 2004; 95(5):382-96. PubMed ID: 15388766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9-based heritable targeted mutagenesis in Thermobia domestica: A genetic tool in an apterygote development model of wing evolution.
    Ohde T; Takehana Y; Shiotsuki T; Niimi T
    Arthropod Struct Dev; 2018 Jul; 47(4):362-369. PubMed ID: 29908341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Where is, in 2017, the evo in evo-devo (evolutionary developmental biology)?
    Diogo R
    J Exp Zool B Mol Dev Evol; 2018 Jan; 330(1):15-22. PubMed ID: 29393575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evo Devo and cognitive science.
    Ploeger A; Galis F
    Wiley Interdiscip Rev Cogn Sci; 2011 Jul; 2(4):429-440. PubMed ID: 26302202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evo-Devo: The Double Identity of Insect Wings.
    Tomoyasu Y
    Curr Biol; 2018 Jan; 28(2):R75-R77. PubMed ID: 29374449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNAi screening of developmental toolkit genes: a search for novel wing genes in the red flour beetle, Tribolium castaneum.
    Linz DM; Tomoyasu Y
    Dev Genes Evol; 2015 Jan; 225(1):11-22. PubMed ID: 25613748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary morphology and Evo-devo: hierarchy and novelty.
    Love AC
    Theory Biosci; 2006 Mar; 124(3-4):317-33. PubMed ID: 17046363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.
    Donoughe S; Crall JD; Merz RA; Combes SA
    J Morphol; 2011 Dec; 272(12):1409-21. PubMed ID: 21915894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective.
    Toth AL; Rehan SM
    Annu Rev Entomol; 2017 Jan; 62():419-442. PubMed ID: 27912247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Daphnia carapace and other novel structures evolved via the cryptic persistence of serial homologs.
    Bruce HS; Patel NH
    Curr Biol; 2022 Sep; 32(17):3792-3799.e3. PubMed ID: 35858617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches.
    Elias-Neto M; Belles X
    R Soc Open Sci; 2016 Aug; 3(8):160347. PubMed ID: 27853616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generating phenotypic variation: prospects from "evo-devo" research on Bicyclus anynana wing patterns.
    Beldade P; Brakefield PM; Long AD
    Evol Dev; 2005; 7(2):101-7. PubMed ID: 15733307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary origin of the insect wing via integration of two developmental modules.
    Niwa N; Akimoto-Kato A; Niimi T; Tojo K; Machida R; Hayashi S
    Evol Dev; 2010; 12(2):168-76. PubMed ID: 20433457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary origin and functioning of pregenital abdominal outgrowths in a viviparous insect, Arixenia esau.
    Tworzydlo W; Jaglarz MK; Pardyak L; Bilinska B; Bilinski SM
    Sci Rep; 2019 Nov; 9(1):16090. PubMed ID: 31695096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.