These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28357056)

  • 41. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model.
    Beldade P; Rudd S; Gruber JD; Long AD
    BMC Genomics; 2006 May; 7():130. PubMed ID: 16737530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identifying Coopted Networks and Causative Mutations in the Origin of Novel Complex Traits.
    Monteiro A; Gupta MD
    Curr Top Dev Biol; 2016; 119():205-26. PubMed ID: 27282027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bristles reduce the force required to 'fling' wings apart in the smallest insects.
    Jones SK; Yun YJ; Hedrick TL; Griffith BE; Miller LA
    J Exp Biol; 2016 Dec; 219(Pt 23):3759-3772. PubMed ID: 27903629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies of threespine stickleback developmental evolution: progress and promise.
    Cresko WA; McGuigan KL; Phillips PC; Postlethwait JH
    Genetica; 2007 Jan; 129(1):105-26. PubMed ID: 16897450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The morphogenesis of evolutionary developmental biology.
    Gilbert SF
    Int J Dev Biol; 2003; 47(7-8):467-77. PubMed ID: 14756322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Making quantitative morphological variation from basic developmental processes: Where are we? The case of the Drosophila wing.
    Matamoro-Vidal A; Salazar-Ciudad I; Houle D
    Dev Dyn; 2015 Sep; 244(9):1058-1073. PubMed ID: 25619644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modularity, individuality, and evo-devo in butterfly wings.
    Beldade P; Koops K; Brakefield PM
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14262-7. PubMed ID: 12391291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The evo-devo of plant speciation.
    Fernández-Mazuecos M; Glover BJ
    Nat Ecol Evol; 2017 Mar; 1(4):110. PubMed ID: 28812669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A modified paranotal theory of insect wing origin.
    Rasnitsyn AP
    J Morphol; 1981 Jun; 168(3):331-338. PubMed ID: 30110990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evo-Devo: the long and winding road.
    Baguñà J; Garcia-Fernàndez J
    Int J Dev Biol; 2003; 47(7-8):705-13. PubMed ID: 14756346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evo-Devo: evolutionary developmental mechanisms.
    Hall BK
    Int J Dev Biol; 2003; 47(7-8):491-5. PubMed ID: 14756324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.
    Lehmann FO
    J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of evo-devo.
    Raff RA; Love AC
    J Exp Zool B Mol Dev Evol; 2004 Jan; 302(1):19-34. PubMed ID: 14760652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials.
    Mountcastle AM; Combes SA
    J Exp Biol; 2014 Apr; 217(Pt 7):1108-15. PubMed ID: 24311806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Where is the Evo in Evo-Devo (evolutionary developmental biology)?
    Diogo R
    J Exp Zool B Mol Dev Evol; 2016 Jan; 326(1):9-18. PubMed ID: 26626542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanical basis of wing and haltere coordination in flies.
    Deora T; Singh AK; Sane SP
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1481-6. PubMed ID: 25605915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.