These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28357065)

  • 1. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy.
    Liu X; Liu S
    Biomed Rep; 2017 Feb; 6(2):140-145. PubMed ID: 28357065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Non-coding RNA in Diabetic Cardiomyopathy.
    Xia L; Song M
    Adv Exp Med Biol; 2020; 1229():181-195. PubMed ID: 32285412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy.
    Xu Z; Sun J; Tong Q; Lin Q; Qian L; Park Y; Zheng Y
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27941647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides.
    Ghosh N; Katare R
    Cardiovasc Diabetol; 2018 Mar; 17(1):43. PubMed ID: 29566757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy.
    Xu D; Zhang X; Chen X; Yang S; Chen H
    Life Sci; 2020 Sep; 256():117980. PubMed ID: 32561396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy.
    Mathur P; Rani V
    Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone Deacetylases in the Pathogenesis of Diabetic Cardiomyopathy.
    Ke X; Lin Z; Ye Z; Leng M; Chen B; Jiang C; Jiang X; Li G
    Front Endocrinol (Lausanne); 2021; 12():679655. PubMed ID: 34367065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of inflammation, exosomes and Ca
    Sanganalmath SK; Dubey S; Veeranki S; Narisetty K; Krishnamurthy P
    Cardiovasc Diabetol; 2023 Feb; 22(1):37. PubMed ID: 36804872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 attenuates high glucose-induced cardiomyocyte apoptosis via regulation of miR-181a-5p.
    Cheng Y; Li J; Wang C; Yang H; Wang Y; Zhan T; Guo S; Liang J; Bai Y; Yu J; Liu G
    Exp Anim; 2020 Jan; 69(1):34-44. PubMed ID: 31353329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy.
    Yue Y; Meng K; Pu Y; Zhang X
    Diabetes Res Clin Pract; 2017 Nov; 133():124-130. PubMed ID: 28934669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictors and prevention of diabetic cardiomyopathy.
    Chavali V; Tyagi SC; Mishra PK
    Diabetes Metab Syndr Obes; 2013; 6():151-60. PubMed ID: 23610527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy.
    Pant T; Dhanasekaran A; Fang J; Bai X; Bosnjak ZJ; Liang M; Ge ZD
    BMC Cardiovasc Disord; 2018 Oct; 18(1):197. PubMed ID: 30342478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long Non-coding RNA: A Key Regulator in the Pathogenesis of Diabetic Cardiomyopathy.
    Guo Y; Feng X; Wang D; Kang X; Zhang L; Ren H; Yuan G
    Front Cardiovasc Med; 2021; 8():655598. PubMed ID: 33889601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies.
    Ghosh N; Chacko L; Bhattacharya H; Vallamkondu J; Nag S; Dey A; Karmakar T; Reddy PH; Kandimalla R; Dewanjee S
    Biomedicines; 2023 Apr; 11(4):. PubMed ID: 37189744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathophysiological Fundamentals of Diabetic Cardiomyopathy.
    Hu X; Bai T; Xu Z; Liu Q; Zheng Y; Cai L
    Compr Physiol; 2017 Mar; 7(2):693-711. PubMed ID: 28333387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the Vital Role of Long Non-Coding RNAs in Cardiac Oxidative Stress, Cell Death, and Fibrosis in Diabetic Cardiomyopathy.
    Tian Y; Gao Z; Liu W; Li J; Jiang X; Xin Y
    Antioxidants (Basel); 2022 Dec; 11(12):. PubMed ID: 36552599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research Progress on Epigenetics of Diabetic Cardiomyopathy in Type 2 Diabetes.
    Deng J; Liao Y; Liu J; Liu W; Yan D
    Front Cell Dev Biol; 2021; 9():777258. PubMed ID: 35004678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exosomal microRNAs: potential targets for the prevention and treatment of diabetic cardiomyopathy.
    Zhang T; Gao Z; Chen K
    J Cardiol; 2022 Nov; 80(5):423-431. PubMed ID: 35000826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Argatroban Attenuates Diabetic Cardiomyopathy in Rats by Reducing Fibrosis, Inflammation, Apoptosis, and Protease-Activated Receptor Expression.
    Bulani Y; Sharma SS
    Cardiovasc Drugs Ther; 2017 Jun; 31(3):255-267. PubMed ID: 28695302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA.
    Yang X; Li X; Lin Q; Xu Q
    Gene; 2019 Oct; 715():143995. PubMed ID: 31336140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.