These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28357252)

  • 1. Multiple metabolic requirements for size homeostasis and initiation of division in
    Soma S; Yang K; Morales MI; Polymenis M
    Microb Cell; 2014 Aug; 1(8):256-266. PubMed ID: 28357252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic determinants of cell size at birth and their impact on cell cycle progression in Saccharomyces cerevisiae.
    Truong SK; McCormick RF; Polymenis M
    G3 (Bethesda); 2013 Sep; 3(9):1525-30. PubMed ID: 23821617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-carbon metabolic enzymes are regulated during cell division and make distinct contributions to the metabolome and cell cycle progression in Saccharomyces cerevisiae.
    Hammer SE; Polymenis M
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36627750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling gene expression for cell size control and senescence in Saccharomyces cerevisiae.
    Chen Y; Futcher B
    Curr Genet; 2021 Feb; 67(1):41-47. PubMed ID: 33151380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell size control of development in Saccharomyces cerevisiae.
    Calvert GR; Dawes IW
    Nature; 1984 Nov 1-7; 312(5989):61-3. PubMed ID: 6387507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae.
    Guo J; Bryan BA; Polymenis M
    Arch Microbiol; 2004 Oct; 182(4):326-30. PubMed ID: 15349714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational control of lipogenesis links protein synthesis and phosphoinositide signaling with nuclear division in Saccharomyces cerevisiae.
    Maitra N; Hammer S; Kjerfve C; Bankaitis VA; Polymenis M
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34849864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division.
    Hartwell LH; Unger MW
    J Cell Biol; 1977 Nov; 75(2 Pt 1):422-35. PubMed ID: 400873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells of the budding yeast S. cerevisiae.
    Lew DJ; Marini NJ; Reed SI
    Cell; 1992 Apr; 69(2):317-27. PubMed ID: 1533176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Ishikawa T
    Exp Cell Res; 1983 Jun; 146(1):151-61. PubMed ID: 6305691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Rho-type GTPase in control of cell size in Saccharomyces cerevisiae.
    Kikuchi Y; Mizuuchi E; Nogami S; Morishita S; Ohya Y
    FEMS Yeast Res; 2007 Jun; 7(4):569-78. PubMed ID: 17302939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Details Matter: Noise and Model Structure Set the Relationship between Cell Size and Cell Cycle Timing.
    Barber F; Ho PY; Murray AW; Amir A
    Front Cell Dev Biol; 2017; 5():92. PubMed ID: 29164112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shrinking Daughters: Rlm1-Dependent G
    Piccirillo S; Neog D; Spade D; Van Horn JD; Tiede-Lewis LM; Dallas SL; Kapros T; Honigberg SM
    Genetics; 2017 Aug; 206(4):1923-1938. PubMed ID: 28637712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genes which control cell proliferation in the yeast Saccharomyces cerevisiae.
    Sudbery PE; Goodey AR; Carter BL
    Nature; 1980 Nov; 288(5789):401-4. PubMed ID: 7001255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell size homeostasis: Metabolic control of growth and cell division.
    Björklund M
    Biochim Biophys Acta Mol Cell Res; 2019 Mar; 1866(3):409-417. PubMed ID: 30315834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle.
    Chandler-Brown D; Schmoller KM; Winetraub Y; Skotheim JM
    Curr Biol; 2017 Sep; 27(18):2774-2783.e3. PubMed ID: 28889980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast.
    Dorsey S; Tollis S; Cheng J; Black L; Notley S; Tyers M; Royer CA
    Cell Syst; 2018 May; 6(5):539-554.e11. PubMed ID: 29792825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-mediated increase in the critical cell size required for the G1 to S transition in Saccharomyces cerevisiae.
    Baroni MD; Monti P; Marconi G; Alberghina L
    Exp Cell Res; 1992 Aug; 201(2):299-306. PubMed ID: 1322313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple inputs ensure yeast cell size homeostasis during cell cycle progression.
    Garmendia-Torres C; Tassy O; Matifas A; Molina N; Charvin G
    Elife; 2018 Jul; 7():. PubMed ID: 29972352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast.
    Baroni MD; Monti P; Alberghina L
    Nature; 1994 Sep; 371(6495):339-42. PubMed ID: 8090203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.