BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28357279)

  • 1. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death.
    Gonçalves AP; Videira A
    Microb Cell; 2015 Mar; 2(3):68-73. PubMed ID: 28357279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi.
    Antos-Krzeminska N; Jarmuszkiewicz W
    Protist; 2019 Feb; 170(1):21-37. PubMed ID: 30553126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases.
    Hao MS; Rasmusson AG
    Physiol Plant; 2016 Jul; 157(3):338-51. PubMed ID: 27079180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative NAD(P)H dehydrogenases of plant mitochondria.
    Rasmusson AG; Soole KL; Elthon TE
    Annu Rev Plant Biol; 2004; 55():23-39. PubMed ID: 15725055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species.
    Moller IM
    Annu Rev Plant Physiol Plant Mol Biol; 2001 Jun; 52():561-591. PubMed ID: 11337409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Type II NAD(P)H Dehydrogenases.
    Soole KL; Smith CA
    Methods Mol Biol; 2015; 1305():151-64. PubMed ID: 25910733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress.
    Smith C; Barthet M; Melino V; Smith P; Day D; Soole K
    Plant Cell Physiol; 2011 Jul; 52(7):1222-37. PubMed ID: 21659327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional molecular aspects of the NADH dehydrogenases of plant mitochondria.
    Soole KL; Menz RI
    J Bioenerg Biomembr; 1995 Aug; 27(4):397-406. PubMed ID: 8595975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From NADH to ubiquinone in Neurospora mitochondria.
    Videira A; Duarte M
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):187-91. PubMed ID: 12206913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.
    Antos-Krzeminska N; Jarmuszkiewicz W
    Protist; 2014 Sep; 165(5):580-93. PubMed ID: 25113830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor.
    Sorrentino L; Calogero AM; Pandini V; Vanoni MA; Sevrioukova IF; Aliverti A
    Biochemistry; 2015 Dec; 54(47):6996-7009. PubMed ID: 26535916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria.
    Møller IM; Rasmusson AG; Fredlund KM
    J Bioenerg Biomembr; 1993 Aug; 25(4):377-84. PubMed ID: 8226719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal respiration: a fusion of standard and alternative components.
    Joseph-Horne T; Hollomon DW; Wood PM
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):179-95. PubMed ID: 11245784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of alternative NAD(P)H dehydrogenases leads to decreased mitochondrial ROS in Neurospora crassa.
    Carneiro P; Duarte M; Videira A
    Free Radic Biol Med; 2012 Jan; 52(2):402-9. PubMed ID: 22100504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels.
    Wulff A; Oliveira HC; Saviani EE; Salgado I
    Nitric Oxide; 2009 Sep; 21(2):132-9. PubMed ID: 19576290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD
    Shimizu M
    Biosci Biotechnol Biochem; 2018 Feb; 82(2):216-224. PubMed ID: 29327656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain.
    Gupta KJ; Kumari A; Florez-Sarasa I; Fernie AR; Igamberdiev AU
    J Exp Bot; 2018 Jun; 69(14):3413-3424. PubMed ID: 29590433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential role of Apoptosis Inducing Factor in evolutionarily significant eukaryote, Dictyostelium discoideum survival.
    Kadam AA; Jubin T; Mir HA; Begum R
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt A):2942-2955. PubMed ID: 27663234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.