These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 28357434)

  • 1. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J; Gaffrey MJ; Qian WJ
    Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review.
    Majewska AM; Mostek A
    Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
    Li X; Gluth A; Zhang T; Qian WJ
    Proteomics; 2023 Jul; 23(13-14):e2200194. PubMed ID: 37248656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
    Zhang T; Gaffrey MJ; Li X; Qian WJ
    Am J Physiol Cell Physiol; 2021 Feb; 320(2):C182-C194. PubMed ID: 33264075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathological Impact of Redox Post-Translational Modifications.
    Chahla C; Kovacic H; Ferhat L; Leloup L
    Antioxid Redox Signal; 2024 Jul; 41(1-3):152-180. PubMed ID: 38504589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox proteomics: identification of oxidatively modified proteins.
    Ghezzi P; Bonetto V
    Proteomics; 2003 Jul; 3(7):1145-53. PubMed ID: 12872215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress.
    Li X; Day NJ; Feng S; Gaffrey MJ; Lin TD; Paurus VL; Monroe ME; Moore RJ; Yang B; Xian M; Qian WJ
    Redox Biol; 2021 Oct; 46():102111. PubMed ID: 34425387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Probes for Redox Signaling and Oxidative Stress.
    Abo M; Weerapana E
    Antioxid Redox Signal; 2019 Apr; 30(10):1369-1386. PubMed ID: 29132214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein redox modification as a cellular defense mechanism against tissue ischemic injury.
    Yan LJ
    Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes.
    Held JM; Gibson BW
    Mol Cell Proteomics; 2012 Apr; 11(4):R111.013037. PubMed ID: 22159599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.