These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 28357859)

  • 1. Electrostatic Repulsion between Unique Arginine Residues Is Essential for the Efficient in Vitro Assembly of the Transmembrane Domain of a Trimeric Autotransporter.
    Aoki E; Sato D; Fujiwara K; Ikeguchi M
    Biochemistry; 2017 Apr; 56(15):2139-2148. PubMed ID: 28357859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assembly of Haemophilus influenzae adhesin transmembrane domain and studies on the electrostatic repulsion at the interface.
    Aoki E; Ikeguchi M
    Biophys Rev; 2019 Jun; 11(3):303-309. PubMed ID: 31073957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter.
    Meng G; Surana NK; St Geme JW; Waksman G
    EMBO J; 2006 Jun; 25(11):2297-304. PubMed ID: 16688217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment.
    Holdbrook DA; Piggot TJ; Sansom MS; Khalid S
    Biochim Biophys Acta; 2013 Feb; 1828(2):715-23. PubMed ID: 22982599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repetitive architecture of the Haemophilus influenzae Hia trimeric autotransporter.
    Meng G; St Geme JW; Waksman G
    J Mol Biol; 2008 Dec; 384(4):824-36. PubMed ID: 18948113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autotransporter β-domains have a specific function in protein secretion beyond outer-membrane targeting.
    Saurí A; Oreshkova N; Soprova Z; Jong WS; Sani M; Peters PJ; Luirink J; van Ulsen P
    J Mol Biol; 2011 Sep; 412(4):553-67. PubMed ID: 21806993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface.
    Müller D; Benz I; Tapadar D; Buddenborg C; Greune L; Schmidt MA
    Infect Immun; 2005 Jul; 73(7):3851-9. PubMed ID: 15972470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel intein-like autoproteolytic mechanism in autotransporter proteins.
    Tajima N; Kawai F; Park SY; Tame JR
    J Mol Biol; 2010 Oct; 402(4):645-56. PubMed ID: 20615416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes.
    Herr FM; Aronson J; Storch J
    Biochemistry; 1996 Jan; 35(4):1296-303. PubMed ID: 8573586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers.
    Schneider D
    FEBS Lett; 2004 Nov; 577(1-2):5-8. PubMed ID: 15527753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimeric autotransporters require trimerization of the passenger domain for stability and adhesive activity.
    Cotter SE; Surana NK; Grass S; St Geme JW
    J Bacteriol; 2006 Aug; 188(15):5400-7. PubMed ID: 16855229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered tyrosine residues serve as the local probes to detect a kinetic intermediate in the folding of ribose-binding protein.
    Kim D; Kim C; Park C
    J Mol Biol; 1994 Jul; 240(4):385-95. PubMed ID: 8035461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barriers to folding of the transmembrane domain of the Escherichia coli autotransporter adhesin involved in diffuse adherence.
    Mogensen JE; Tapadar D; Schmidt MA; Otzen DE
    Biochemistry; 2005 Mar; 44(11):4533-45. PubMed ID: 15766284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli, binds its siderophore in the absence of the transmembrane barrel domain.
    Usher KC; Ozkan E; Gardner KH; Deisenhofer J
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10676-81. PubMed ID: 11526207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of arginine residues important for the activity of Escherichia coli signal peptidase I.
    Kim YT; Kurita R; Kojima M; Nishii W; Tanokura M; Muramatsu T; Ito H; Takahashi K
    Biol Chem; 2004 May; 385(5):381-8. PubMed ID: 15195997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin.
    Ren J; Sharpe JC; Collier RJ; London E
    Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the passenger domain of a model autotransporter on the properties of its translocator domain.
    Dé E; Saint N; Glinel K; Meli AC; Lévy D; Jacob-Dubuisson F
    Mol Membr Biol; 2008 Apr; 25(3):192-202. PubMed ID: 18428035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spatial orientation of the essential amino acid residues arginine and aspartate within the alpha1beta1 integrin recognition site of collagen IV has been resolved using fluorescence resonance energy transfer.
    Golbik R; Eble JA; Ries A; Kühn K
    J Mol Biol; 2000 Mar; 297(2):501-9. PubMed ID: 10715216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model structure of the prototypical non-fimbrial adhesin YadA of Yersinia enterocolitica.
    Koretke KK; Szczesny P; Gruber M; Lupas AN
    J Struct Biol; 2006 Aug; 155(2):154-61. PubMed ID: 16675268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.