These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28357860)

  • 21. Multistimulus-Responsive Supramolecular Hydrogels Derived by
    Priyanka ; Kumar A
    ACS Omega; 2020 Jun; 5(23):13672-13684. PubMed ID: 32566832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox-Active Dynamic Self-Supporting Thixotropic 3D-Printable G-Quadruplex Hydrogels.
    Biswas A; Maiti S; Kalaskar DM; Das AK
    Chem Asian J; 2018 Dec; 13(24):3928-3934. PubMed ID: 30334370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimuli-Responsive Nucleotide-Amino Acid Hybrid Supramolecular Hydrogels.
    Mulvee M; Vasiljevic N; Mann S; Patil AJ
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
    Yang T; Ji R; Deng XX; Du FS; Li ZC
    Soft Matter; 2014 Apr; 10(15):2671-8. PubMed ID: 24647364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-assembly Fabrication of a Functional Multicomponent Supramolecular Hydrogel Based on a Self-Sorting Double Network.
    Tanaka W; Shigemitsu H; Fujisaku T; Kubota R; Minami S; Urayama K; Hamachi I
    J Am Chem Soc; 2019 Mar; 141(12):4997-5004. PubMed ID: 30835456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel.
    Zhou XR; Ge R; Luo SZ
    J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery.
    Zhang Z; He Z; Liang R; Ma Y; Huang W; Jiang R; Shi S; Chen H; Li X
    Biomacromolecules; 2016 Mar; 17(3):798-807. PubMed ID: 26830342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation.
    Singh V; Snigdha K; Singh C; Sinha N; Thakur AK
    Soft Matter; 2015 Jul; 11(26):5353-64. PubMed ID: 26059479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-healing mechanism and bioelectrochemical interface properties of core-shell guanosine-borate hydrogels.
    Wang H; Xie XQ; Peng Y; Li J; Liu CS
    J Colloid Interface Sci; 2021 May; 590():103-113. PubMed ID: 33524710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release.
    Chen L; Yao X; Gu Z; Zheng K; Zhao C; Lei W; Rong Q; Lin L; Wang J; Jiang L; Liu M
    Chem Sci; 2017 Mar; 8(3):2010-2016. PubMed ID: 28451318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.
    Lu J; Li Y; Hu D; Chen X; Liu Y; Wang L; Zhao Y
    Biomed Res Int; 2015; 2015():236745. PubMed ID: 26351630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supramolecular hybrid hydrogel based on host-guest interaction and its application in drug delivery.
    Yu J; Ha W; Sun JN; Shi YP
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19544-51. PubMed ID: 25372156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimuli-responsive hydrogels in drug delivery and tissue engineering.
    Sood N; Bhardwaj A; Mehta S; Mehta A
    Drug Deliv; 2016; 23(3):758-80. PubMed ID: 25045782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs.
    Peters GM; Davis JT
    Chem Soc Rev; 2016 Jun; 45(11):3188-206. PubMed ID: 27146863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer.
    Wang W; Deng L; Liu S; Li X; Zhao X; Hu R; Zhang J; Han H; Dong A
    Acta Biomater; 2012 Nov; 8(11):3963-73. PubMed ID: 22835677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of a Bis-Urea Dimer and Its Effects on the Physical Properties of an Amphiphilic Tris-Urea Supramolecular Hydrogel.
    Sawada H; Yamanaka M
    Chem Asian J; 2018 Apr; 13(8):929-933. PubMed ID: 29512335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels.
    Serra L; Doménech J; Peppas NA
    Biomaterials; 2006 Nov; 27(31):5440-51. PubMed ID: 16828864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release.
    Komatsu H; Matsumoto S; Tamaru S; Kaneko K; Ikeda M; Hamachi I
    J Am Chem Soc; 2009 Apr; 131(15):5580-5. PubMed ID: 19331364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smart soft supramolecular hybrid hydrogels modulated by Zn
    Priyanka ; Kumar A
    Dalton Trans; 2020 Nov; 49(42):15095-15108. PubMed ID: 33107505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.