These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28358013)

  • 1. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons.
    Park C; Jung H; Hahn JW
    Sci Rep; 2017 Mar; 7():45352. PubMed ID: 28358013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale 2.5-dimensional surface patterning with plasmonic lithography.
    Jung H; Park C; Oh S; Hahn JW
    Sci Rep; 2017 Aug; 7(1):9721. PubMed ID: 28852013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridized plasmonic modes and Fabry-Perot effect in nanoscale bowtie aperture waveguide.
    Zhang L; Qin J; Guo S; Wang L
    Opt Express; 2019 Jun; 27(12):17221-17227. PubMed ID: 31252935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant Effects in Nanoscale Bowtie Apertures.
    Ding L; Qin J; Guo S; Liu T; Kinzel E; Wang L
    Sci Rep; 2016 Jun; 6():27254. PubMed ID: 27250995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures.
    Lee E; Hahn JW
    Nanotechnology; 2008 Jul; 19(27):275303. PubMed ID: 21828699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spatial plasmonic Bloch oscillations in nanoscale three-dimensional surface plasmon polaritons metal waveguide arrays.
    Lin W; Wang W
    Opt Express; 2019 Aug; 27(17):24591-24600. PubMed ID: 31510346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures.
    Kinzel EC; Xu X
    Opt Express; 2009 May; 17(10):8036-45. PubMed ID: 19434135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 40  nm thick photoresist-compatible plasmonic nanolithography using a bowtie aperture combined with a metal-insulator-metal structure.
    Jiang Z; Luo H; Guo S; Wang L
    Opt Lett; 2019 Feb; 44(4):783-786. PubMed ID: 30767986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture.
    Murphy-DuBay N; Wang L; Kinzel EC; Uppuluri SM; Xu X
    Opt Express; 2008 Feb; 16(4):2584-9. PubMed ID: 18542340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.
    Chen Y; Chen J; Xu X; Chu J
    Opt Express; 2015 Apr; 23(7):9093-9. PubMed ID: 25968743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near- and far-field study of polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays.
    Choi S; Park J; Chew SH; Khurelbaatar T; Gliserin A; Kim S; Kim DE
    Opt Express; 2023 Sep; 31(20):31760-31767. PubMed ID: 37858993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves.
    Sun C; Chen J; Yao W; Li H; Gong Q
    Sci Rep; 2015 Jun; 5():11331. PubMed ID: 26061592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch.
    Han D; Wei Y
    Opt Express; 2022 Jun; 30(12):20589-20604. PubMed ID: 36224800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanolithography using high transmission nanoscale bowtie apertures.
    Wang L; Uppuluri SM; Jin EX; Xu X
    Nano Lett; 2006 Mar; 6(3):361-4. PubMed ID: 16522023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdiffraction light focusing using a cross sectional ridge waveguide nanoscale aperture.
    Traverso L; Datta A; Xu X
    Opt Express; 2016 Nov; 24(23):26016-26023. PubMed ID: 27857340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel optical nanolithography using nanoscale bowtie aperture array.
    Uppuluri SM; Kinzel EC; Li Y; Xu X
    Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal.
    Kim Y; Jung H; Kim S; Jang J; Lee JY; Hahn JW
    Opt Express; 2011 Sep; 19(20):19296-309. PubMed ID: 21996870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic wavelength splitter based on a metal-insulator-metal waveguide with a graded grating coupler.
    Yu Y; Si J; Ning Y; Sun M; Deng X
    Opt Lett; 2017 Jan; 42(2):187-190. PubMed ID: 28081068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.