BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28358022)

  • 1. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices.
    Caridad JM; Winters S; McCloskey D; Duesberg GS; Donegan JF; Krstić V
    Sci Rep; 2017 Mar; 7():45548. PubMed ID: 28358022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near-Field Enhancements at Chiral Metasurfaces.
    Jones RR; Miksch C; Kwon H; Pothoven C; Rusimova KR; Kamp M; Gong K; Zhang L; Batten T; Smith B; Silhanek AV; Fischer P; Wolverson D; Valev VK
    Adv Mater; 2023 Aug; 35(34):e2209282. PubMed ID: 36631958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the plasmonic near-field in metallic nanohelices.
    Caridad JM; Winters S; McCloskey D; Duesberg GS; Donegan JF; Krstić V
    Nanotechnology; 2018 Aug; 29(32):325204. PubMed ID: 29781804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic amplifiers: engineering giant light enhancements by tuning resonances in multiscale plasmonic nanostructures.
    Chen A; Miller RL; DePrince AE; Joshi-Imre A; Shevchenko E; Ocola LE; Gray SK; Welp U; Vlasko-Vlasov VK
    Small; 2013 Jun; 9(11):1939-46. PubMed ID: 23281210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates.
    Wang H; Levin CS; Halas NJ
    J Am Chem Soc; 2005 Nov; 127(43):14992-3. PubMed ID: 16248615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS.
    Dey P
    ACS Meas Sci Au; 2023 Dec; 3(6):434-443. PubMed ID: 38145020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection.
    Huang JA; Zhao YQ; Zhang XJ; He LF; Wong TL; Chui YS; Zhang WJ; Lee ST
    Nano Lett; 2013 Nov; 13(11):5039-45. PubMed ID: 24074380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density ordered Ag@Al₂O₃ nanobowl arrays in applications of surface-enhanced Raman spectroscopy.
    Kang M; Zhang X; Liu L; Zhou Q; Jin M; Zhou G; Gao X; Lu X; Zhang Z; Liu J
    Nanotechnology; 2016 Apr; 27(16):165304. PubMed ID: 26963676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertically standing nanoporous Al-Ag zig-zag silver nanorod arrays for highly active SERS substrates.
    Rajput A; Kumar S; Singh JP
    Analyst; 2017 Oct; 142(20):3959-3966. PubMed ID: 28951908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly uniform and reproducible surface enhanced Raman scattering on air-stable metallic glassy nanowire array.
    Liu X; Shao Y; Tang Y; Yao KF
    Sci Rep; 2014 Jul; 4():5835. PubMed ID: 25060646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS.
    Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J
    ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars.
    Caldwell JD; Glembocki OJ; Bezares FJ; Kariniemi MI; Niinistö JT; Hatanpää TT; Rendell RW; Ukaegbu M; Ritala MK; Prokes SM; Hosten CM; Leskelä MA; Kasica R
    Opt Express; 2011 Dec; 19(27):26056-64. PubMed ID: 22274194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity.
    Liu X; Ma J; Jiang P; Shen J; Wang R; Wang Y; Tu G
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45332-45341. PubMed ID: 32914628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Vertical Carbon Nanotube Forests for Multiplex Surface-Enhanced Raman Scattering Detection.
    Goldberg-Oppenheimer P; Hutter T; Chen B; Robertson J; Hofmann S; Mahajan S
    J Phys Chem Lett; 2012 Dec; 3(23):3486-92. PubMed ID: 26290977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold Nanocone Array with Extensive Electromagnetic Fields for Highly Reproducible Surface-Enhanced Raman Scattering Measurements.
    Fujiwara S; Kawasaki D; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.