These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 28358025)

  • 1. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model.
    Joshi C; Irish EK; Spiller TP
    Sci Rep; 2017 Mar; 7():45587. PubMed ID: 28358025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.
    Dwyer S; Barsotti L; Chua SS; Evans M; Factourovich M; Gustafson D; Isogai T; Kawabe K; Khalaidovski A; Lam PK; Landry M; Mavalvala N; McClelland DE; Meadors GD; Mow-Lowry CM; Schnabel R; Schofield RM; Smith-Lefebvre N; Stefszky M; Vorvick C; Sigg D
    Opt Express; 2013 Aug; 21(16):19047-60. PubMed ID: 23938820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase control of squeezed vacuum states of light in gravitational wave detectors.
    Dooley KL; Schreiber E; Vahlbruch H; Affeldt C; Leong JR; Wittel H; Grote H
    Opt Express; 2015 Apr; 23(7):8235-45. PubMed ID: 25968662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors.
    Zhao Y; Aritomi N; Capocasa E; Leonardi M; Eisenmann M; Guo Y; Polini E; Tomura A; Arai K; Aso Y; Huang YC; Lee RK; Lück H; Miyakawa O; Prat P; Shoda A; Tacca M; Takahashi R; Vahlbruch H; Vardaro M; Wu CM; Barsuglia M; Flaminio R
    Phys Rev Lett; 2020 May; 124(17):171101. PubMed ID: 32412296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beating the 3 dB Limit for Intracavity Squeezing and Its Application to Nondemolition Qubit Readout.
    Qin W; Miranowicz A; Nori F
    Phys Rev Lett; 2022 Sep; 129(12):123602. PubMed ID: 36179165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics.
    Navarrete-Benlloch C; García-Ripoll JJ; Porras D
    Phys Rev Lett; 2014 Nov; 113(19):193601. PubMed ID: 25415906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intense Squeezed Light from Lasers with Sharply Nonlinear Gain at Optical Frequencies.
    Nguyen L; Sloan J; Rivera N; Soljačić M
    Phys Rev Lett; 2023 Oct; 131(17):173801. PubMed ID: 37955495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squeezing of Quantum Noise of Motion in a Micromechanical Resonator.
    Pirkkalainen JM; Damskägg E; Brandt M; Massel F; Sillanpää MA
    Phys Rev Lett; 2015 Dec; 115(24):243601. PubMed ID: 26705631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic squeezing in a polariton Josephson junction.
    Adiyatullin AF; Anderson MD; Flayac H; Portella-Oberli MT; Jabeen F; Ouellet-Plamondon C; Sallen GC; Deveaud B
    Nat Commun; 2017 Nov; 8(1):1329. PubMed ID: 29109422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive.
    Kono S; Masuyama Y; Ishikawa T; Tabuchi Y; Yamazaki R; Usami K; Koshino K; Nakamura Y
    Phys Rev Lett; 2017 Jul; 119(2):023602. PubMed ID: 28753365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm.
    Meylahn F; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Sep; 129(12):121103. PubMed ID: 36179187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catch-disperse-release readout for superconducting qubits.
    Sete EA; Galiautdinov A; Mlinar E; Martinis JM; Korotkov AN
    Phys Rev Lett; 2013 May; 110(21):210501. PubMed ID: 23745846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum frequency down-conversion of bright amplitude-squeezed states.
    Kong D; Li Z; Wang S; Wang X; Li Y
    Opt Express; 2014 Oct; 22(20):24192-201. PubMed ID: 25321994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated source of broadband quadrature squeezed light.
    Hoff UB; Nielsen BM; Andersen UL
    Opt Express; 2015 May; 23(9):12013-36. PubMed ID: 25969291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
    Braumüller J; Marthaler M; Schneider A; Stehli A; Rotzinger H; Weides M; Ustinov AV
    Nat Commun; 2017 Oct; 8(1):779. PubMed ID: 28974675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squeezed optomechanics with phase-matched amplification and dissipation.
    Lü XY; Wu Y; Johansson JR; Jing H; Zhang J; Nori F
    Phys Rev Lett; 2015 Mar; 114(9):093602. PubMed ID: 25793814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction.
    Didier N; Bourassa J; Blais A
    Phys Rev Lett; 2015 Nov; 115(20):203601. PubMed ID: 26613438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alignment sensing and control for squeezed vacuum states of light.
    Schreiber E; Dooley KL; Vahlbruch H; Affeldt C; Bisht A; Leong JR; Lough J; Prijatelj M; Slutsky J; Was M; Wittel H; Danzmann K; Grote H
    Opt Express; 2016 Jan; 24(1):146-52. PubMed ID: 26832246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.