BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28358310)

  • 21. Minimising variation in aspalathin content of aqueous green rooibos extract: optimising extraction and identifying critical material attributes.
    Miller N; De Beer D; Joubert E
    J Sci Food Agric; 2017 Nov; 97(14):4937-4942. PubMed ID: 28397329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of green rooibos (Aspalathus linearis) extract and water-soluble nanomicelles of green rooibos extract encapsulated with ascorbic acid for enhanced aspalathin content in ready-to-drink iced teas.
    Joubert E; Viljoen M; De Beer D; Malherbe CJ; Brand DJ; Manley M
    J Agric Food Chem; 2010 Oct; 58(20):10965-71. PubMed ID: 20923193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ flavonoid analysis by FT-Raman spectroscopy: identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis).
    Baranska M; Schulz H; Joubert E; Manley M
    Anal Chem; 2006 Nov; 78(22):7716-21. PubMed ID: 17105163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspalathin, a C-glucosyl dihydrochalcone from rooibos improves the hypoglycemic potential of metformin in type 2 diabetic (db/db) mice.
    Dludla PV; Gabuza KB; Muller CJF; Joubert E; Louw J; Johnson R
    Physiol Res; 2018 Nov; 67(5):813-818. PubMed ID: 30044119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory Interactions of Aspalathus linearis (Rooibos) Extracts and Compounds, Aspalathin and Z-2-(β-d-Glucopyranosyloxy)-3-phenylpropenoic Acid, on Cytochromes Metabolizing Hypoglycemic and Hypolipidemic Drugs.
    Patel O; Muller C; Joubert E; Louw J; Rosenkranz B; Awortwe C
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-Term and Sub-Chronic Dietary Exposure to Aspalathin-Enriched Green Rooibos (Aspalathus linearis) Extract Affects Rat Liver Function and Antioxidant Status.
    van der Merwe JD; de Beer D; Joubert E; Gelderblom WC
    Molecules; 2015 Dec; 20(12):22674-90. PubMed ID: 26694346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations.
    Breiter T; Laue C; Kressel G; Gröll S; Engelhardt UH; Hahn A
    Food Chem; 2011 Sep; 128(2):338-47. PubMed ID: 25212140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome.
    Muller CJF; Malherbe CJ; Chellan N; Yagasaki K; Miura Y; Joubert E
    Crit Rev Food Sci Nutr; 2018 Jan; 58(2):227-246. PubMed ID: 27305453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative Fragmentation of Aspalathin Leads to the Formation of Dihydrocaffeic Acid and the Related Lysine Amide Adduct.
    Mertens N; Heymann T; Glomb MA
    J Agric Food Chem; 2020 Nov; 68(46):13111-13120. PubMed ID: 32023062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate.
    Mazibuko SE; Joubert E; Johnson R; Louw J; Opoku AR; Muller CJ
    Mol Nutr Food Res; 2015 Nov; 59(11):2199-208. PubMed ID: 26310822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of spectrophotometric methods for screening of green rooibos (Aspalathus linearis) and green honeybush (Cyclopia genistoides) extracts for high levels of Bio-active compounds.
    Joubert E; Manley M; Botha M
    Phytochem Anal; 2008; 19(2):169-78. PubMed ID: 17893845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells.
    Schloms L; Storbeck KH; Swart P; Gelderblom WC; Swart AC
    J Steroid Biochem Mol Biol; 2012 Feb; 128(3-5):128-38. PubMed ID: 22101210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal transport of 3,6'-disinapoylsucrose, a major active component of Polygala tenuifolia, using Caco-2 cell monolayer and in situ rat intestinal perfusion models.
    Chen Y; Liu X; Pan R; Zhu X; Steinmetz A; Liao Y; Wang N; Peng B; Chang Q
    Planta Med; 2013 Oct; 79(15):1434-9. PubMed ID: 24043590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospraying as a suitable method for nanoencapsulation of the hydrophilic bioactive dihydrochalcone, aspalathin.
    Human C; De Beer D; Van Der Rijst M; Aucamp M; Joubert E
    Food Chem; 2019 Mar; 276():467-474. PubMed ID: 30409621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concise and scalable synthesis of aspalathin, a powerful plasma sugar-lowering natural product.
    Han Z; Achilonu MC; Kendrekar PS; Joubert E; Ferreira D; Bonnet SL; van der Westhuizen JH
    J Nat Prod; 2014 Mar; 77(3):583-8. PubMed ID: 24354397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of S-methyl-L-methionine (SMM) from Brassicaceae Family Vegetables and Characterization of the Intestinal Transport of SMM by Caco-2 Cells.
    Song JH; Lee HR; Shim SM
    J Food Sci; 2017 Jan; 82(1):36-43. PubMed ID: 27883364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Transcription Profile Unveils the Cardioprotective Effect of Aspalathin against Lipid Toxicity in an In Vitro H9c2 Model.
    Johnson R; Dludla PV; Muller CJ; Huisamen B; Essop MF; Louw J
    Molecules; 2017 Jan; 22(2):. PubMed ID: 28146135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myocardial Glucose Clearance by Aspalathin Treatment in Young, Mature, and Obese Insulin-Resistant Rats.
    Smit SE; Johnson R; Van Vuuren MA; Huisamen B
    Planta Med; 2018 Jan; 84(2):75-82. PubMed ID: 28772334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frog intestinal sac as an in vitro method for the assessment of intestinal permeability in humans: Application to carrier transported drugs.
    Franco M; Lopedota A; Trapani A; Cutrignelli A; Meleleo D; Micelli S; Trapani G
    Int J Pharm; 2008 Mar; 352(1-2):182-8. PubMed ID: 18055143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.
    Westerhout J; van de Steeg E; Grossouw D; Zeijdner EE; Krul CA; Verwei M; Wortelboer HM
    Eur J Pharm Sci; 2014 Oct; 63():167-77. PubMed ID: 25046168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.