These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 28358357)

  • 1. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials.
    Meng Q; Zhong Z; Zhang B
    Sci Rep; 2017 Mar; 7():45708. PubMed ID: 28358357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-tunable dual-layer terahertz metamaterials.
    Zhao X; Fan K; Zhang J; Keiser GR; Duan G; Averitt RD; Zhang X
    Microsyst Nanoeng; 2016; 2():16025. PubMed ID: 31057825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stand-up magnetic metamaterials at terahertz frequencies.
    Fan K; Strikwerda AC; Tao H; Zhang X; Averitt RD
    Opt Express; 2011 Jun; 19(13):12619-27. PubMed ID: 21716502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband terahertz generation from metamaterials.
    Luo L; Chatzakis I; Wang J; Niesler FB; Wegener M; Koschny T; Soukoulis CM
    Nat Commun; 2014; 5():3055. PubMed ID: 24402324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid tunable THz metadevice using a high birefringence liquid crystal.
    Chikhi N; Lisitskiy M; Papari G; Tkachenko V; Andreone A
    Sci Rep; 2016 Oct; 6():34536. PubMed ID: 27708395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A broadband tunable terahertz negative refractive index metamaterial.
    Ling F; Zhong Z; Huang R; Zhang B
    Sci Rep; 2018 Jun; 8(1):9843. PubMed ID: 29959377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Resonators and Highly Tunable Terahertz Metamaterials Enabled by Vanadium Dioxide (VO
    Wang S; Kang L; Werner DH
    Sci Rep; 2017 Jun; 7(1):4326. PubMed ID: 28659628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-anisotropic Fano resonance in three-dimensional metamaterials.
    Moritake Y; Tanaka T
    Sci Rep; 2018 Jun; 8(1):9012. PubMed ID: 29899415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase modulation using dual split ring resonators.
    Mirza I; Shi S; Prather DW
    Opt Express; 2009 Mar; 17(7):5089-97. PubMed ID: 19333271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.
    Tang W; Wang L; Chen X; Liu C; Yu A; Lu W
    Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical electric and magnetic metamaterial response at terahertz frequencies.
    Padilla WJ; Taylor AJ; Highstrete C; Lee M; Averitt RD
    Phys Rev Lett; 2006 Mar; 96(10):107401. PubMed ID: 16605787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating.
    Du C; Zhou D; Guo HH; Pang YQ; Shi HY; Liu WF; Su JZ; Singh C; Trukhanov S; Trukhanov A; Panina L; Xu Z
    Nanoscale; 2020 May; 12(17):9769-9775. PubMed ID: 32324192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials.
    Li S; Nugraha PS; Su X; Chen X; Yang Q; Unferdorben M; Kovács F; Kunsági-Máté S; Liu M; Zhang X; Ouyang C; Li Y; Fülöp JA; Han J; Zhang W
    Opt Express; 2019 Feb; 27(3):2317-2326. PubMed ID: 30732270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband THz Absorption of Microbolometer Array Integrated with Split-Ring Resonators.
    Fan S; Gou J; Niu Q; Xie Z; Wang J
    Nanoscale Res Lett; 2020 Dec; 15(1):223. PubMed ID: 33270179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime.
    Wu L; Du T; Xu N; Ding C; Li H; Sheng Q; Liu M; Yao J; Wang Z; Lou X; Zhang W
    Small; 2016 May; 12(19):2610-5. PubMed ID: 27007192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.