BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28358362)

  • 1. Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver.
    Wang L; Yu H; Cheng H; He K; Fang Z; Ge L; Cheng T; Jin Y
    Cell Death Dis; 2017 Mar; 8(3):e2722. PubMed ID: 28358362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver.
    Sui Z; Nowak RB; Bacconi A; Kim NE; Liu H; Li J; Wickrema A; An XL; Fowler VM
    Blood; 2014 Jan; 123(5):758-67. PubMed ID: 24159174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver.
    Liu XS; Li XH; Wang Y; Shu RZ; Wang L; Lu SY; Kong H; Jin YE; Zhang LJ; Fei J; Chen SJ; Chen Z; Gu MM; Lu ZY; Wang ZG
    Blood; 2007 Aug; 110(3):870-6. PubMed ID: 17431131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoblastoma promotes definitive erythropoiesis by repressing Id2 in fetal liver macrophages.
    Iavarone A; King ER; Dai XM; Leone G; Stanley ER; Lasorella A
    Nature; 2004 Dec; 432(7020):1040-5. PubMed ID: 15616565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.
    Soni S; Bala S; Hanspal M
    Blood Cells Mol Dis; 2008; 41(2):141-7. PubMed ID: 18501646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver.
    Kusakabe M; Hasegawa K; Hamada M; Nakamura M; Ohsumi T; Suzuki H; Tran MT; Kudo T; Uchida K; Ninomiya H; Chiba S; Takahashi S
    Blood; 2011 Aug; 118(5):1374-85. PubMed ID: 21628412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system.
    Zhang J; Socolovsky M; Gross AW; Lodish HF
    Blood; 2003 Dec; 102(12):3938-46. PubMed ID: 12907435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins.
    Yu H; He K; Wang L; Hu J; Gu J; Zhou C; Lu R; Jin Y
    J Cell Sci; 2015 Aug; 128(15):2881-90. PubMed ID: 26065429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K-Ras is essential for normal fetal liver erythropoiesis.
    Khalaf WF; White H; Wenning MJ; Orazi A; Kapur R; Ingram DA
    Blood; 2005 May; 105(9):3538-41. PubMed ID: 15644420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of erythropoiesis and myelopoiesis by exogenous erythropoietin in human long-term marrow cultures.
    Mayani H; Guilbert LJ; Janowska-Wieczorek A
    Exp Hematol; 1990 Mar; 18(3):174-9. PubMed ID: 2303109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical requirement of VEGF-C in transition to fetal erythropoiesis.
    Fang S; Nurmi H; Heinolainen K; Chen S; Salminen E; Saharinen P; Mikkola HK; Alitalo K
    Blood; 2016 Aug; 128(5):710-20. PubMed ID: 27343251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The secreted lymphangiogenic factor CCBE1 is essential for fetal liver erythropoiesis.
    Zou Z; Enis DR; Bui H; Khandros E; Kumar V; Jakus Z; Thom C; Yang Y; Dhillon V; Chen M; Lu M; Weiss MJ; Kahn ML
    Blood; 2013 Apr; 121(16):3228-36. PubMed ID: 23426945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow.
    Muench MO; Namikawa R
    Blood Cells Mol Dis; 2001; 27(2):377-90. PubMed ID: 11259159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SETD2 is essential for terminal differentiation of erythroblasts during fetal erythropoiesis.
    Li Y; Tang H; Chen F; Chen J; Wang H; Chen Z; Duan Y; Wang X; Li L; Ouyang K
    Biochem Biophys Res Commun; 2021 May; 552():98-105. PubMed ID: 33743353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity.
    Emerson SG; Sieff CA; Wang EA; Wong GG; Clark SC; Nathan DG
    J Clin Invest; 1985 Sep; 76(3):1286-90. PubMed ID: 3876355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of STK40 protein in mice causes respiratory failure and death at birth.
    Yu H; He K; Li L; Sun L; Tang F; Li R; Ning W; Jin Y
    J Biol Chem; 2013 Feb; 288(8):5342-52. PubMed ID: 23293024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enforced expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo.
    Yang D; Zhang X; Dong Y; Liu X; Wang T; Wang X; Geng Y; Fang S; Zheng Y; Chen X; Chen J; Pan G; Wang J
    Cell Cycle; 2015; 14(4):612-20. PubMed ID: 25590986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of a flippase subunit
    Yang F; Huang Y; Chen X; Liu L; Liao D; Zhang H; Huang G; Liu W; Zhu X; Wang W; Lobo CA; Yazdanbakhsh K; An X; Ju Z
    Haematologica; 2019 Oct; 104(10):1984-1994. PubMed ID: 30819915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells.
    Zhang J; Li L; Baldwin AS; Friedman AD; Paz-Priel I
    PLoS One; 2015; 10(6):e0130441. PubMed ID: 26102347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation.
    He K; Hu J; Yu H; Wang L; Tang F; Gu J; Ge L; Wang H; Li S; Hu P; Jin Y
    J Biol Chem; 2017 Jan; 292(1):351-360. PubMed ID: 27899448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.