BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28358481)

  • 1. Fluorescence and SERS Imaging for the Simultaneous Absolute Quantification of Multiple miRNAs in Living Cells.
    Ye S; Li X; Wang M; Tang B
    Anal Chem; 2017 May; 89(9):5124-5130. PubMed ID: 28358481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals.
    Zhang N; Ye S; Wang Z; Li R; Wang M
    ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages.
    Wang Z; Xue J; Bi C; Xin H; Wang Y; Cao X
    Analyst; 2019 Dec; 144(24):7250-7262. PubMed ID: 31687670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent-Raman Binary Star Ratio Probe for MicroRNA Detection and Imaging in Living Cells.
    Zhang J; Zhang H; Ye S; Wang X; Ma L
    Anal Chem; 2021 Jan; 93(3):1466-1471. PubMed ID: 33347282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A One-Two-Three Multifunctional System for Enhanced Imaging and Detection of Intracellular MicroRNA and Chemogene Therapy.
    Liu X; Wang X; Ye S; Li R; Li H
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):27825-27835. PubMed ID: 34124898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Quantification of MicroRNAs and Telomerase in Living Cells.
    Ma W; Fu P; Sun M; Xu L; Kuang H; Xu C
    J Am Chem Soc; 2017 Aug; 139(34):11752-11759. PubMed ID: 28762730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Face-to-face Assembly Strategy of Au Nanocubes: Induced Generation of Broad Hotspot Regions for SERS-Fluorescence Dual-Signal Detection of Intracellular miRNAs.
    Wang J; Ma S; Ge K; Xu R; Shen F; Gao X; Yao Y; Chen Y; Chen Y; Gao F; Wu G
    Anal Chem; 2024 Jun; 96(22):8922-8931. PubMed ID: 38758935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DNA-Fueled and Catalytic Molecule Machine Lights Up Trace Under-Expressed MicroRNAs in Living Cells.
    Li D; Zhou W; Yuan R; Xiang Y
    Anal Chem; 2017 Sep; 89(18):9934-9940. PubMed ID: 28809475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sense and Validate: Fluorophore/Mass Dual-Encoded Nanoprobes for Fluorescence Imaging and MS Quantification of Intracellular Multiple MicroRNAs.
    Xu H; Zhang Z; Wang Y; Zhang X; Zhu JJ; Min Q
    Anal Chem; 2022 Apr; 94(16):6329-6337. PubMed ID: 35412806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanocage-based surface-enhanced Raman scattering probes for long-term monitoring of intracellular microRNA during bone marrow stem cell differentiation.
    Cao X; Wang Z; Bi L; Bi C; Du Q
    Nanoscale; 2020 Jan; 12(3):1513-1527. PubMed ID: 31854413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA.
    Wu Y; Li Y; Han H; Zhao C; Zhang X
    Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNA-linker-DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification.
    Ye S; Wang M; Wang Z; Zhang N; Luo X
    Chem Commun (Camb); 2018 Jul; 54(56):7786-7789. PubMed ID: 29943776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Surface-Enhanced Raman Spectroscopy Detection of Multiplexed MicroRNA Biomarkers.
    Zhou W; Tian YF; Yin BC; Ye BC
    Anal Chem; 2017 Jun; 89(11):6120-6128. PubMed ID: 28488851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative and Noninvasive Detection of SAH-Related MiRNA in Cerebrospinal Fluids In Vivo Using SERS Sensors Based on Acupuncture-Based Technology.
    Sun J; Song Y; Wang M; Zhao P; Gao F; Li J; Yang M; Yuan H; Sun B; Wang Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37088-37100. PubMed ID: 35938390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs.
    Wang J; Fu J; Chen H; Wang A; Ma Y; Yan H; Li Y; Yu D; Gao F; Li S
    Biosens Bioelectron; 2023 Mar; 224():115051. PubMed ID: 36621084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS-based direct and sandwich assay methods for mir-21 detection.
    Guven B; Dudak FC; Boyaci IH; Tamer U; Ozsoz M
    Analyst; 2014 Mar; 139(5):1141-7. PubMed ID: 24418951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells.
    Zhang J; Ma X; Wang Z
    Anal Chem; 2019 May; 91(10):6600-6607. PubMed ID: 31026147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar.
    Kim WH; Lee JU; Song S; Kim S; Choi YJ; Sim SJ
    Analyst; 2019 Feb; 144(5):1768-1776. PubMed ID: 30672519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.