These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 28358499)
1. Investigation of a Quantum Monte Carlo Protocol To Achieve High Accuracy and High-Throughput Materials Formation Energies. Saritas K; Mueller T; Wagner L; Grossman JC J Chem Theory Comput; 2017 May; 13(5):1943-1951. PubMed ID: 28358499 [TBL] [Abstract][Full Text] [Related]
2. Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations. Burkatzki M; Filippi C; Dolg M J Chem Phys; 2008 Oct; 129(16):164115. PubMed ID: 19045255 [TBL] [Abstract][Full Text] [Related]
3. Quantum Monte Carlo simulation of nanoscale MgH2 cluster thermodynamics. Wu Z; Allendorf MD; Grossman JC J Am Chem Soc; 2009 Oct; 131(39):13918-9. PubMed ID: 19739635 [TBL] [Abstract][Full Text] [Related]
4. Energy-consistent pseudopotentials for quantum Monte Carlo calculations. Burkatzki M; Filippi C; Dolg M J Chem Phys; 2007 Jun; 126(23):234105. PubMed ID: 17600402 [TBL] [Abstract][Full Text] [Related]
5. Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations. Esler KP; Cohen RE; Militzer B; Kim J; Needs RJ; Towler MD Phys Rev Lett; 2010 May; 104(18):185702. PubMed ID: 20482190 [TBL] [Abstract][Full Text] [Related]
6. Diffusion Monte Carlo for Accurate Dissociation Energies of 3d Transition Metal Containing Molecules. Doblhoff-Dier K; Meyer J; Hoggan PE; Kroes GJ; Wagner LK J Chem Theory Comput; 2016 Jun; 12(6):2583-97. PubMed ID: 27175914 [TBL] [Abstract][Full Text] [Related]
7. TurboGenius: Python suite for high-throughput calculations of ab initio quantum Monte Carlo methods. Nakano K; Kohulák O; Raghav A; Casula M; Sorella S J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38078530 [TBL] [Abstract][Full Text] [Related]
8. Minimum energy pathways via quantum Monte Carlo. Saccani S; Filippi C; Moroni S J Chem Phys; 2013 Feb; 138(8):084109. PubMed ID: 23464142 [TBL] [Abstract][Full Text] [Related]
9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
10. Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Williamson AJ; Grossman JC; Hood RQ; Puzder A; Galli G Phys Rev Lett; 2002 Nov; 89(19):196803. PubMed ID: 12443140 [TBL] [Abstract][Full Text] [Related]
11. Toward accurate reaction energetics for molecular line growth at surface: Quantum Monte Carlo and density functional theory calculations. Kanai Y; Takeuchi N J Chem Phys; 2009 Dec; 131(21):214708. PubMed ID: 19968361 [TBL] [Abstract][Full Text] [Related]
12. Communication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water. Alfè D; Bartók AP; Csányi G; Gillan MJ J Chem Phys; 2013 Jun; 138(22):221102. PubMed ID: 23781773 [TBL] [Abstract][Full Text] [Related]
13. Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide. Yu J; Wagner LK; Ertekin E J Chem Phys; 2015 Dec; 143(22):224707. PubMed ID: 26671396 [TBL] [Abstract][Full Text] [Related]
14. QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo. Kent PRC; Annaberdiyev A; Benali A; Bennett MC; Landinez Borda EJ; Doak P; Hao H; Jordan KD; Krogel JT; Kylänpää I; Lee J; Luo Y; Malone FD; Melton CA; Mitas L; Morales MA; Neuscamman E; Reboredo FA; Rubenstein B; Saritas K; Upadhyay S; Wang G; Zhang S; Zhao L J Chem Phys; 2020 May; 152(17):174105. PubMed ID: 32384844 [TBL] [Abstract][Full Text] [Related]
15. A density functional and quantum Monte Carlo study of glutamic acid in vacuo and in a dielectric continuum medium. Floris FM; Filippi C; Amovilli C J Chem Phys; 2012 Aug; 137(7):075102. PubMed ID: 22920143 [TBL] [Abstract][Full Text] [Related]
16. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods. Ganesh P; Kim J; Park C; Yoon M; Reboredo FA; Kent PR J Chem Theory Comput; 2014 Dec; 10(12):5318-23. PubMed ID: 26583215 [TBL] [Abstract][Full Text] [Related]
17. Multideterminant Wave Functions in Quantum Monte Carlo. Morales MA; McMinis J; Clark BK; Kim J; Scuseria GE J Chem Theory Comput; 2012 Jul; 8(7):2181-8. PubMed ID: 26588949 [TBL] [Abstract][Full Text] [Related]
18. Toward quantum Monte Carlo forces on heavier ions: Scaling properties. Tiihonen J; Clay RC; Krogel JT J Chem Phys; 2021 May; 154(20):204111. PubMed ID: 34241166 [TBL] [Abstract][Full Text] [Related]
19. Introducing QMC/MMpol: Quantum Monte Carlo in Polarizable Force Fields for Excited States. Guareschi R; Zulfikri H; Daday C; Floris FM; Amovilli C; Mennucci B; Filippi C J Chem Theory Comput; 2016 Apr; 12(4):1674-83. PubMed ID: 26959751 [TBL] [Abstract][Full Text] [Related]
20. Chemical accuracy from quantum Monte Carlo for the benzene dimer. Azadi S; Cohen RE J Chem Phys; 2015 Sep; 143(10):104301. PubMed ID: 26374029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]