These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 28358509)
1. How Solvent Dynamics Controls the Schlenk Equilibrium of Grignard Reagents: A Computational Study of CH Peltzer RM; Eisenstein O; Nova A; Cascella M J Phys Chem B; 2017 Apr; 121(16):4226-4237. PubMed ID: 28358509 [TBL] [Abstract][Full Text] [Related]
2. Morphological Plasticity of LiCl Clusters Interacting with Grignard Reagent in Tetrahydrofuran. de Giovanetti M; Hopen Eliasson SH; Castro AC; Eisenstein O; Cascella M J Am Chem Soc; 2023 Aug; 145(30):16305-16309. PubMed ID: 37471267 [TBL] [Abstract][Full Text] [Related]
3. The Grignard Reaction - Unraveling a Chemical Puzzle. Peltzer RM; Gauss J; Eisenstein O; Cascella M J Am Chem Soc; 2020 Feb; 142(6):2984-2994. PubMed ID: 31951398 [TBL] [Abstract][Full Text] [Related]
4. Watching Na atoms solvate into (Na+,e-) contact pairs: untangling the ultrafast charge-transfer-to-solvent dynamics of Na- in tetrahydrofuran (THF). Cavanagh MC; Larsen RE; Schwartz BJ J Phys Chem A; 2007 Jun; 111(24):5144-57. PubMed ID: 17523607 [TBL] [Abstract][Full Text] [Related]
5. Five different types of η(8)-cyclooctatetraenyl-lanthanide half-sandwich complexes from one ligand set, including a "giant neodymium wheel". Sroor FM; Hrib CG; Liebing P; Hilfert L; Busse S; Edelmann FT Dalton Trans; 2016 Sep; 45(34):13332-46. PubMed ID: 27381428 [TBL] [Abstract][Full Text] [Related]
6. Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state. Korobkov I; Gorelsky S; Gambarotta S J Am Chem Soc; 2009 Aug; 131(30):10406-20. PubMed ID: 19588963 [TBL] [Abstract][Full Text] [Related]
7. Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents. Curtis ER; Hannigan MD; Vitek AK; Zimmerman PM J Phys Chem A; 2020 Feb; 124(8):1480-1488. PubMed ID: 32011885 [TBL] [Abstract][Full Text] [Related]
9. The addition of Grignard reagents to carbodiimides. The synthesis, structure and potential utilization of magnesium amidinates. Chlupatý T; Bílek M; Merna J; Brus J; RůŽičková Z; Strassner T; RůŽička A Dalton Trans; 2019 Apr; 48(16):5335-5342. PubMed ID: 30941391 [TBL] [Abstract][Full Text] [Related]
10. The ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 1. Exploring the roles of solvent and solute electronic structure in condensed-phase charge-transfer reactions. Bragg AE; Schwartz BJ J Phys Chem B; 2008 Jan; 112(2):483-94. PubMed ID: 18085770 [TBL] [Abstract][Full Text] [Related]
11. Added-metal-free catalytic nucleophilic addition of Grignard reagents to ketones. Zong H; Huang H; Liu J; Bian G; Song L J Org Chem; 2012 May; 77(10):4645-52. PubMed ID: 22524204 [TBL] [Abstract][Full Text] [Related]
12. Moving solvated electrons with light: nonadiabatic mixed quantum/classical molecular dynamics simulations of the relocalization of photoexcited solvated electrons in tetrahydrofuran (THF). Bedard-Hearn MJ; Larsen RE; Schwartz BJ J Chem Phys; 2006 Nov; 125(19):194509. PubMed ID: 17129125 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 2. Photoinduced electron transfer to counterions in solution. Bragg AE; Schwartz BJ J Phys Chem A; 2008 Apr; 112(16):3530-43. PubMed ID: 18386855 [TBL] [Abstract][Full Text] [Related]
14. Grignard reaction with chlorosilanes in THF: a kinetic study. Tuulmets A; Nguyen BT; Panov D J Org Chem; 2004 Jul; 69(15):5071-6. PubMed ID: 15255738 [TBL] [Abstract][Full Text] [Related]
15. Lanthanoid Pseudo-Grignard Reagents: A Major Untapped Resource. Ali SH; Deacon GB; Junk PC; Hamidi S; Wiecko M; Wang J Chemistry; 2018 Jan; 24(1):230-242. PubMed ID: 29057570 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic elucidation of the formation of the inverse Ca(I) sandwich complex [(thf)3Ca(mu-C6H3-1,3,5-Ph3)Ca(thf)3] and stability of aryl-substituted phenylcalcium complexes. Krieck S; Görls H; Westerhausen M J Am Chem Soc; 2010 Sep; 132(35):12492-501. PubMed ID: 20718434 [TBL] [Abstract][Full Text] [Related]
18. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations. Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113 [TBL] [Abstract][Full Text] [Related]
19. Manipulation of reaction pathways in redox transmetallation-ligand exchange syntheses of lanthanoid(II)/(III) aryloxide complexes. Deacon GB; Fallon GD; Forsyth CM; Harris SC; Junk PC; Skelton BW; White AH Dalton Trans; 2006 Feb; (6):802-12. PubMed ID: 16437175 [TBL] [Abstract][Full Text] [Related]
20. "Alkaline-earth metals in a box": structures of solvent-separated ion pairs. Harder S; Feil F; Repo T Chemistry; 2002 May; 8(9):1991-9. PubMed ID: 11981883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]