These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 28358836)
1. Selection of key sequence-based features for prediction of essential genes in 31 diverse bacterial species. Liu X; Wang BJ; Xu L; Tang HL; Xu GQ PLoS One; 2017; 12(3):e0174638. PubMed ID: 28358836 [TBL] [Abstract][Full Text] [Related]
3. Prediction of essential genes in prokaryote based on artificial neural network. Xu L; Guo Z; Liu X Genes Genomics; 2020 Jan; 42(1):97-106. PubMed ID: 31736009 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the utilization of the antisense RNA strategy to identify essential genes in heterologous bacteria. Wang B; Kuramitsu HK FEMS Microbiol Lett; 2003 Mar; 220(2):171-6. PubMed ID: 12670677 [TBL] [Abstract][Full Text] [Related]
5. Geptop: a gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. Wei W; Ning LW; Ye YN; Guo FB PLoS One; 2013; 8(8):e72343. PubMed ID: 23977285 [TBL] [Abstract][Full Text] [Related]
6. A new computational strategy for predicting essential genes. Cheng J; Wu W; Zhang Y; Li X; Jiang X; Wei G; Tao S BMC Genomics; 2013 Dec; 14():910. PubMed ID: 24359534 [TBL] [Abstract][Full Text] [Related]
7. Network-based features enable prediction of essential genes across diverse organisms. Azhagesan K; Ravindran B; Raman K PLoS One; 2018; 13(12):e0208722. PubMed ID: 30543651 [TBL] [Abstract][Full Text] [Related]
8. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC. Dehzangi A; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A J Theor Biol; 2015 Jan; 364():284-94. PubMed ID: 25264267 [TBL] [Abstract][Full Text] [Related]
9. An ensemble method for multi-type Gram-negative bacterial secreted protein prediction by integrating different PSSM-based features. Kong L; Zhang L SAR QSAR Environ Res; 2019 Mar; 30(3):181-194. PubMed ID: 30739484 [TBL] [Abstract][Full Text] [Related]
10. An integrated machine-learning model to predict prokaryotic essential genes. Deng J Methods Mol Biol; 2015; 1279():137-51. PubMed ID: 25636617 [TBL] [Abstract][Full Text] [Related]
12. EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features. Uddin MR; Sharma A; Farid DM; Rahman MM; Dehzangi A; Shatabda S J Theor Biol; 2018 Apr; 443():138-146. PubMed ID: 29421211 [TBL] [Abstract][Full Text] [Related]
13. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. Acencio ML; Lemke N BMC Bioinformatics; 2009 Sep; 10():290. PubMed ID: 19758426 [TBL] [Abstract][Full Text] [Related]
14. DELEAT: gene essentiality prediction and deletion design for bacterial genome reduction. Solana J; Garrote-Sánchez E; Gil R BMC Bioinformatics; 2021 Sep; 22(1):444. PubMed ID: 34537011 [TBL] [Abstract][Full Text] [Related]
15. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499 [TBL] [Abstract][Full Text] [Related]
16. Protein subcellular localization prediction based on compartment-specific biological features. Su CY; Lo A; Chiu HS; Sung TY; Hsu WL Comput Syst Bioinformatics Conf; 2006; ():325-30. PubMed ID: 17369650 [TBL] [Abstract][Full Text] [Related]
17. Prediction of essential proteins based on gene expression programming. Zhong J; Wang J; Peng W; Zhang Z; Pan Y BMC Genomics; 2013; 14 Suppl 4(Suppl 4):S7. PubMed ID: 24267033 [TBL] [Abstract][Full Text] [Related]
18. Comparative bacterial genomics: defining the minimal core genome. Huang CH; Hsiang T; Trevors JT Antonie Van Leeuwenhoek; 2013 Feb; 103(2):385-98. PubMed ID: 23011009 [TBL] [Abstract][Full Text] [Related]
19. Hybrid Method Based on Information Gain and Support Vector Machine for Gene Selection in Cancer Classification. Gao L; Ye M; Lu X; Huang D Genomics Proteomics Bioinformatics; 2017 Dec; 15(6):389-395. PubMed ID: 29246519 [TBL] [Abstract][Full Text] [Related]
20. Sequence-based information-theoretic features for gene essentiality prediction. Nigatu D; Sobetzko P; Yousef M; Henkel W BMC Bioinformatics; 2017 Nov; 18(1):473. PubMed ID: 29121868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]