BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28358853)

  • 21. A novel influenza A virus activating enzyme from porcine lung: purification and characterization.
    Sato M; Yoshida S; Iida K; Tomozawa T; Kido H; Yamashita M
    Biol Chem; 2003 Feb; 384(2):219-27. PubMed ID: 12675514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition.
    Böttcher E; Freuer C; Steinmetzer T; Klenk HD; Garten W
    Vaccine; 2009 Oct; 27(45):6324-9. PubMed ID: 19840668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SPINT2 inhibits proteases involved in activation of both influenza viruses and metapneumoviruses.
    Straus MR; Kinder JT; Segall M; Dutch RE; Whittaker GR
    Virology; 2020 Apr; 543():43-53. PubMed ID: 32056846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A recommended numbering scheme for influenza A HA subtypes.
    Burke DF; Smith DJ
    PLoS One; 2014; 9(11):e112302. PubMed ID: 25391151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses.
    Kido H; Okumura Y; Takahashi E; Pan HY; Wang S; Chida J; Le TQ; Yano M
    J Mol Genet Med; 2008 Nov; 3(1):167-75. PubMed ID: 19565019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus.
    Sun X; Tse LV; Ferguson AD; Whittaker GR
    J Virol; 2010 Sep; 84(17):8683-90. PubMed ID: 20554779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kallistatin ameliorates influenza virus pathogenesis by inhibition of kallikrein-related peptidase 1-mediated cleavage of viral hemagglutinin.
    Leu CH; Yang ML; Chung NH; Huang YJ; Su YC; Chen YC; Lin CC; Shieh GS; Chang MY; Wang SW; Chang Y; Chao J; Chao L; Wu CL; Shiau AL
    Antimicrob Agents Chemother; 2015 Sep; 59(9):5619-30. PubMed ID: 26149981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin.
    Nao N; Yamagishi J; Miyamoto H; Igarashi M; Manzoor R; Ohnuma A; Tsuda Y; Furuyama W; Shigeno A; Kajihara M; Kishida N; Yoshida R; Takada A
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hemagglutinin: a determinant of pathogenicity.
    Böttcher-Friebertshäuser E; Garten W; Matrosovich M; Klenk HD
    Curr Top Microbiol Immunol; 2014; 385():3-34. PubMed ID: 25031010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents.
    Kido H; Okumura Y; Yamada H; Le TQ; Yano M
    Curr Pharm Des; 2007; 13(4):405-14. PubMed ID: 17311557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes.
    Okuya K; Yoshida R; Manzoor R; Saito S; Suzuki T; Sasaki M; Saito T; Kida Y; Mori-Kajihara A; Kondoh T; Sato M; Kajihara M; Miyamoto H; Ichii O; Higashi H; Takada A
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors.
    Böttcher-Friebertshäuser E; Freuer C; Sielaff F; Schmidt S; Eickmann M; Uhlendorff J; Steinmetzer T; Klenk HD; Garten W
    J Virol; 2010 Jun; 84(11):5605-14. PubMed ID: 20237084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium.
    Beaulieu A; Gravel É; Cloutier A; Marois I; Colombo É; Désilets A; Verreault C; Leduc R; Marsault É; Richter MV
    J Virol; 2013 Apr; 87(8):4237-51. PubMed ID: 23365447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of pathogenicity of subtype H9 avian influenza wild-type viruses from a wide geographic origin expressing mono-, di-, or tri-basic hemagglutinin cleavage sites.
    Parvin R; Schinkoethe J; Grund C; Ulrich R; Bönte F; Behr KP; Voss M; Samad MA; Hassan KE; Luttermann C; Beer M; Harder T
    Vet Res; 2020 Mar; 51(1):48. PubMed ID: 32234073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular proteases involved in the pathogenicity of enveloped animal viruses, human immunodeficiency virus, influenza virus A and Sendai virus.
    Kido H; Niwa Y; Beppu Y; Towatari T
    Adv Enzyme Regul; 1996; 36():325-47. PubMed ID: 8869754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human matriptase/ST 14 proteolytically cleaves H7N9 hemagglutinin and facilitates the activation of influenza A/Shanghai/2/2013 virus in cell culture.
    Whittaker GR; Straus MR
    Influenza Other Respir Viruses; 2020 Mar; 14(2):189-195. PubMed ID: 31820577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel type II transmembrane serine proteases, MSPL and TMPRSS13, Proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication.
    Okumura Y; Takahashi E; Yano M; Ohuchi M; Daidoji T; Nakaya T; Böttcher E; Garten W; Klenk HD; Kido H
    J Virol; 2010 May; 84(10):5089-96. PubMed ID: 20219906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site.
    Wong SS; Yoon SW; Zanin M; Song MS; Oshansky C; Zaraket H; Sonnberg S; Rubrum A; Seiler P; Ferguson A; Krauss S; Cardona C; Webby RJ; Crossley B
    Virology; 2014 Nov; 468-470():72-80. PubMed ID: 25151061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure.
    Kido H; Okumura Y; Takahashi E; Pan HY; Wang S; Yao D; Yao M; Chida J; Yano M
    Biochim Biophys Acta; 2012 Jan; 1824(1):186-94. PubMed ID: 21801859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SPINK6 inhibits human airway serine proteases and restricts influenza virus activation.
    Wang D; Li C; Chiu MC; Yu Y; Liu X; Zhao X; Huang J; Cheng Z; Yuan S; Poon V; Cai JP; Chu H; Chan JF; To KK; Yuen KY; Zhou J
    EMBO Mol Med; 2022 Jan; 14(1):e14485. PubMed ID: 34826211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.