These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. What is the real shape of extracellular spikes? Quian Quiroga R J Neurosci Methods; 2009 Feb; 177(1):194-8. PubMed ID: 18983872 [TBL] [Abstract][Full Text] [Related]
4. Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters. Gozani SN; Miller JP IEEE Trans Biomed Eng; 1994 Apr; 41(4):358-72. PubMed ID: 8063302 [TBL] [Abstract][Full Text] [Related]
5. Review of signal distortion through metal microelectrode recording circuits and filters. Nelson MJ; Pouget P; Nilsen EA; Patten CD; Schall JD J Neurosci Methods; 2008 Mar; 169(1):141-57. PubMed ID: 18242715 [TBL] [Abstract][Full Text] [Related]
7. Analog and digital filtering of the brain stem auditory evoked response. Kavanagh KT; Franks R Ann Otol Rhinol Laryngol; 1989 Jul; 98(7 Pt 1):508-14. PubMed ID: 2751210 [TBL] [Abstract][Full Text] [Related]
9. Removal of spurious correlations between spikes and local field potentials. Zanos TP; Mineault PJ; Pack CC J Neurophysiol; 2011 Jan; 105(1):474-86. PubMed ID: 21068271 [TBL] [Abstract][Full Text] [Related]
10. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study. Kim KH; Kim SS; Kim SJ J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513 [TBL] [Abstract][Full Text] [Related]
11. Cell type- and activity-dependent extracellular correlates of intracellular spiking. Anastassiou CA; Perin R; Buzsáki G; Markram H; Koch C J Neurophysiol; 2015 Jul; 114(1):608-23. PubMed ID: 25995352 [TBL] [Abstract][Full Text] [Related]
12. High-pass filtering of the electrogastrogram. Daskalov I; Christov I; Kolev V Med Biol Eng Comput; 1997 May; 35(3):279-82. PubMed ID: 9246864 [TBL] [Abstract][Full Text] [Related]
13. Variability of extracellular spike waveforms of cortical neurons. Fee MS; Mitra PP; Kleinfeld D J Neurophysiol; 1996 Dec; 76(6):3823-33. PubMed ID: 8985880 [TBL] [Abstract][Full Text] [Related]
14. Optimal digital filters for analyzing the mid-latency auditory P50 event-related potential in patients with Alzheimer's disease. Liljander S; Holm A; Keski-Säntti P; Partanen JV J Neurosci Methods; 2016 Jun; 266():50-67. PubMed ID: 27015794 [TBL] [Abstract][Full Text] [Related]
15. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms. Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445 [TBL] [Abstract][Full Text] [Related]
16. Distortion of the middle latency auditory response produced by analog filtering. Scherg M Scand Audiol; 1982; 11(1):57-60. PubMed ID: 7178804 [TBL] [Abstract][Full Text] [Related]
17. Automated spike sorting using density grid contour clustering and subtractive waveform decomposition. Vargas-Irwin C; Donoghue JP J Neurosci Methods; 2007 Aug; 164(1):1-18. PubMed ID: 17512603 [TBL] [Abstract][Full Text] [Related]
18. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography. Comani S; Mantini D; Alleva G; Di Luzio S; Romani GL Phys Med Biol; 2005 Dec; 50(23):5509-21. PubMed ID: 16306648 [TBL] [Abstract][Full Text] [Related]
19. Efficient sequential Bayesian inference method for real-time detection and sorting of overlapped neural spikes. Haga T; Fukayama O; Takayama Y; Hoshino T; Mabuchi K J Neurosci Methods; 2013 Sep; 219(1):92-103. PubMed ID: 23856211 [TBL] [Abstract][Full Text] [Related]
20. Robustness of the significance of spike synchrony with respect to sorting errors. Pazienti A; Grün S J Comput Neurosci; 2006 Dec; 21(3):329-42. PubMed ID: 16927209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]