BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 28359321)

  • 1. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
    Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M
    APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.
    Hagemann TL; Boelens WC; Wawrousek EF; Messing A
    Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.
    Tian R; Gregor M; Wiche G; Goldman JE
    Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant astrocyte Ca
    Saito K; Shigetomi E; Yasuda R; Sato R; Nakano M; Tashiro K; Tanaka KF; Ikenaka K; Mikoshiba K; Mizuta I; Yoshida T; Nakagawa M; Mizuno T; Koizumi S
    Glia; 2018 May; 66(5):1053-1067. PubMed ID: 29383757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes.
    Kondo T; Funayama M; Miyake M; Tsukita K; Era T; Osaka H; Ayaki T; Takahashi R; Inoue H
    Acta Neuropathol Commun; 2016 Jul; 4(1):69. PubMed ID: 27402089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function.
    Lin NH; Yang AW; Chang CH; Perng MD
    FASEB J; 2021 May; 35(5):e21614. PubMed ID: 33908669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.
    Hagemann TL; Connor JX; Messing A
    J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation.
    Yoshida T; Nakagawa M
    Neuropathology; 2012 Aug; 32(4):440-6. PubMed ID: 22118268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition.
    Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE
    J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytic TDP-43 pathology in Alexander disease.
    Walker AK; Daniels CM; Goldman JE; Trojanowski JQ; Lee VM; Messing A
    J Neurosci; 2014 May; 34(19):6448-58. PubMed ID: 24806671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance.
    Tanaka KF; Takebayashi H; Yamazaki Y; Ono K; Naruse M; Iwasato T; Itohara S; Kato H; Ikenaka K
    Glia; 2007 Apr; 55(6):617-31. PubMed ID: 17299771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic conversions of "protoplasmic" to "reactive" astrocytes in Alexander disease.
    Sosunov AA; Guilfoyle E; Wu X; McKhann GM; Goldman JE
    J Neurosci; 2013 Apr; 33(17):7439-50. PubMed ID: 23616550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model.
    Lee SH; Nam TS; Kim KH; Kim JH; Yoon W; Heo SH; Kim MJ; Shin BA; Perng MD; Choy HE; Jo J; Kim MK; Choi SY
    BMC Neurol; 2017 Sep; 17(1):175. PubMed ID: 28882119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.
    Mignot C; Delarasse C; Escaich S; Della Gaspera B; NoƩ E; Colucci-Guyon E; Babinet C; Pekny M; Vicart P; Boespflug-Tanguy O; Dautigny A; Rodriguez D; Pham-Dinh D
    Exp Cell Res; 2007 Aug; 313(13):2766-79. PubMed ID: 17604020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.
    Moody LR; Barrett-Wilt GA; Sussman MR; Messing A
    J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoro-Jade: new fluorescent marker of Rosenthal fibers.
    Tanaka KF; Ochi N; Hayashi T; Ikeda E; Ikenaka K
    Neurosci Lett; 2006 Oct; 407(2):127-30. PubMed ID: 16949206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP.
    Hsiao VC; Tian R; Long H; Der Perng M; Brenner M; Quinlan RA; Goldman JE
    J Cell Sci; 2005 May; 118(Pt 9):2057-65. PubMed ID: 15840648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STAT3 Drives GFAP Accumulation and Astrocyte Pathology in a Mouse Model of Alexander Disease.
    Hagemann TL; Coyne S; Levin A; Wang L; Feany MB; Messing A
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.