These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 28359631)

  • 21. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus.
    Brown PJ; Hardy GG; Trimble MJ; Brun YV
    Adv Microb Physiol; 2009; 54():1-101. PubMed ID: 18929067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus.
    Muir RE; Easter J; Gober JW
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3699-3711. PubMed ID: 16272391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell wall growth during elongation and division: one ring to bind them?
    Scheffers DJ
    Mol Microbiol; 2007 May; 64(4):877-80. PubMed ID: 17501913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.
    Yakhnina AA; Gitai Z
    Mol Microbiol; 2012 Sep; 85(6):1090-104. PubMed ID: 22804814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction.
    Sundararajan K; Miguel A; Desmarais SM; Meier EL; Casey Huang K; Goley ED
    Nat Commun; 2015 Jun; 6():7281. PubMed ID: 26099469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis.
    Yao Q; Jewett AI; Chang YW; Oikonomou CM; Beeby M; Iancu CV; Briegel A; Ghosal D; Jensen GJ
    EMBO J; 2017 Jun; 36(11):1577-1589. PubMed ID: 28438890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate.
    Irnov I; Wang Z; Jannetty ND; Bustamante JA; Rhee KY; Jacobs-Wagner C
    PLoS Genet; 2017 Aug; 13(8):e1006978. PubMed ID: 28827812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic Adaptations to the Loss of a Conserved Bacterial DNA Methyltransferase.
    Gonzalez D; Collier J
    mBio; 2015 Jul; 6(4):e00952. PubMed ID: 26220966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter.
    Goley ED; Comolli LR; Fero KE; Downing KH; Shapiro L
    Mol Microbiol; 2010 Jul; 77(1):56-73. PubMed ID: 20497504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus.
    Möll A; Schlimpert S; Briegel A; Jensen GJ; Thanbichler M
    Mol Microbiol; 2010 Jul; 77(1):90-107. PubMed ID: 20497502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology of Caulobacter crescentus and the Mechanical Role of Crescentin.
    Kim JS; Sun SX
    Biophys J; 2009 Apr; 96(8):L47-9. PubMed ID: 19383443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Getting in the loop: regulation of development in Caulobacter crescentus.
    Curtis PD; Brun YV
    Microbiol Mol Biol Rev; 2010 Mar; 74(1):13-41. PubMed ID: 20197497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus.
    Mohl DA; Easter J; Gober JW
    Mol Microbiol; 2001 Nov; 42(3):741-55. PubMed ID: 11722739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biphasic growth dynamics control cell division in Caulobacter crescentus.
    Banerjee S; Lo K; Daddysman MK; Selewa A; Kuntz T; Dinner AR; Scherer NF
    Nat Microbiol; 2017 Jul; 2():17116. PubMed ID: 28737755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Function and localization dynamics of bifunctional penicillin-binding proteins in Caulobacter crescentus.
    Strobel W; Möll A; Kiekebusch D; Klein KE; Thanbichler M
    J Bacteriol; 2014 Apr; 196(8):1627-39. PubMed ID: 24532768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus.
    Beaufay F; Coppine J; Mayard A; Laloux G; De Bolle X; Hallez R
    EMBO J; 2015 Jul; 34(13):1786-800. PubMed ID: 25953831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus.
    Ohta N; Ninfa AJ; Allaire A; Kulick L; Newton A
    J Bacteriol; 1997 Apr; 179(7):2169-80. PubMed ID: 9079901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.
    Badger JH; Hoover TR; Brun YV; Weiner RM; Laub MT; Alexandre G; Mrázek J; Ren Q; Paulsen IT; Nelson KE; Khouri HM; Radune D; Sosa J; Dodson RJ; Sullivan SA; Rosovitz MJ; Madupu R; Brinkac LM; Durkin AS; Daugherty SC; Kothari SP; Giglio MG; Zhou L; Haft DH; Selengut JD; Davidsen TM; Yang Q; Zafar N; Ward NL
    J Bacteriol; 2006 Oct; 188(19):6841-50. PubMed ID: 16980487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methodology for Ribosome Profiling of Key Stages of the Caulobacter crescentus Cell Cycle.
    Aretakis JR; Al-Husini N; Schrader JM
    Methods Enzymol; 2018; 612():443-465. PubMed ID: 30502952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.