These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 28359705)
1. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Jiang GZ; Yao MD; Wang Y; Zhou L; Song TQ; Liu H; Xiao WH; Yuan YJ Metab Eng; 2017 May; 41():57-66. PubMed ID: 28359705 [TBL] [Abstract][Full Text] [Related]
2. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Zhao J; Bao X; Li C; Shen Y; Hou J Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346 [TBL] [Abstract][Full Text] [Related]
3. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability. Bernard A; Cha S; Shin H; Lee D; Hahn JS Metab Eng; 2024 May; 83():183-192. PubMed ID: 38631459 [TBL] [Abstract][Full Text] [Related]
4. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Zhao J; Li C; Zhang Y; Shen Y; Hou J; Bao X Microb Cell Fact; 2017 Jan; 16(1):17. PubMed ID: 28137282 [TBL] [Abstract][Full Text] [Related]
5. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae. Jiang G; Yao M; Wang Y; Xiao W; Yuan Y Metab Eng; 2021 Jul; 66():51-59. PubMed ID: 33857581 [TBL] [Abstract][Full Text] [Related]
6. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves. Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791 [TBL] [Abstract][Full Text] [Related]
7. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm. Zhang Y; Wang J; Cao X; Liu W; Yu H; Ye L Enzyme Microb Technol; 2020 Mar; 134():109462. PubMed ID: 32044019 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway. Zhang Y; Cao X; Wang J; Tang F Microb Cell Fact; 2022 Oct; 21(1):212. PubMed ID: 36243714 [TBL] [Abstract][Full Text] [Related]
9. [Dynamic control of ERG20 expression to improve production of monoterpenes by engineering Saccharomyces cerevisiae]. Li RS; Wang D; Shi YS; Xu LP; Zhang XL; Wang K; Dai ZB Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(4):897-905. PubMed ID: 35285188 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Simkin AJ; Miettinen K; Claudel P; Burlat V; Guirimand G; Courdavault V; Papon N; Meyer S; Godet S; St-Pierre B; Giglioli-Guivarc'h N; Fischer MJ; Memelink J; Clastre M Phytochemistry; 2013 Jan; 85():36-43. PubMed ID: 23102596 [TBL] [Abstract][Full Text] [Related]
11. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. Liu J; Zhang W; Du G; Chen J; Zhou J J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli. Chen F; Li W; Jiang L; Pu X; Yang Y; Zhang G; Luo Y J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1281-92. PubMed ID: 27349769 [TBL] [Abstract][Full Text] [Related]
13. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory. Zhang C; Li M; Zhao GR; Lu W Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812 [TBL] [Abstract][Full Text] [Related]
14. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Peng B; Nielsen LK; Kampranis SC; Vickers CE Metab Eng; 2018 May; 47():83-93. PubMed ID: 29471044 [TBL] [Abstract][Full Text] [Related]
15. Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene. Mishra S; Pandey P; Dubey AP; Zehra A; Chanotiya CS; Tripathi AK; Mishra MN Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591387 [No Abstract] [Full Text] [Related]
16. Metabolic engineering of monoterpene synthesis in yeast. Fischer MJ; Meyer S; Claudel P; Bergdoll M; Karst F Biotechnol Bioeng; 2011 Aug; 108(8):1883-92. PubMed ID: 21391209 [TBL] [Abstract][Full Text] [Related]
17. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. Hu Z; Lin L; Li H; Li P; Weng Y; Zhang C; Yu A; Xiao D J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):511-523. PubMed ID: 32495196 [TBL] [Abstract][Full Text] [Related]
18. Directed evolution and expression tuning of geraniol synthase for efficient geraniol production in Escherichia coli. Tashiro M; Fujii A; Kawai-Noma S; Saito K; Umeno D J Gen Appl Microbiol; 2017 Nov; 63(5):287-295. PubMed ID: 28954964 [TBL] [Abstract][Full Text] [Related]
19. Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20. Dong H; Chen S; Zhu J; Gao K; Zha W; Lin P; Zi J J Biotechnol; 2020 Jan; 307():29-34. PubMed ID: 31689467 [TBL] [Abstract][Full Text] [Related]
20. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Yee DA; DeNicola AB; Billingsley JM; Creso JG; Subrahmanyam V; Tang Y Metab Eng; 2019 Sep; 55():76-84. PubMed ID: 31226348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]