These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28359792)

  • 21. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability.
    Hu Q; Yin L; Ali A; Cooke AJ; Bennett J; Ratcliffe P; Lo MM; Metzger E; Hoyt S; Hartmann RW
    J Med Chem; 2015 Mar; 58(5):2530-7. PubMed ID: 25711516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and evaluation of imidazolylmethylenetetrahydronaphthalenes and imidazolylmethyleneindanes: potent inhibitors of aldosterone synthase.
    Ulmschneider S; Müller-Vieira U; Mitrenga M; Hartmann RW; Oberwinkler-Marchais S; Klein CD; Bureik M; Bernhardt R; Antes I; Lengauer T
    J Med Chem; 2005 Mar; 48(6):1796-805. PubMed ID: 15771425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of 4-Aryl-5,6,7,8-tetrahydroisoquinolines as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors: In Vivo Evaluation in Rodents and Cynomolgus Monkeys.
    Martin RE; Aebi JD; Hornsperger B; Krebs HJ; Kuhn B; Kuglstatter A; Alker AM; Märki HP; Müller S; Burger D; Ottaviani G; Riboulet W; Verry P; Tan X; Amrein K; Mayweg AV
    J Med Chem; 2015 Oct; 58(20):8054-65. PubMed ID: 26403853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of new 7-substituted-4-imidazolylmethyl coumarins and 4'-substituted-2-imidazolyl acetophenones open analogues as potent and selective inhibitors of steroid-11β-hydroxylase.
    Stefanachi A; Hanke N; Pisani L; Leonetti F; Nicolotti O; Catto M; Cellamare S; Hartmann RW; Carotti A
    Eur J Med Chem; 2015 Jan; 89():106-14. PubMed ID: 25462231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LY3045697: Results from two randomized clinical trials of a novel inhibitor of aldosterone synthase.
    Sloan-Lancaster J; Raddad E; Flynt A; Jin Y; Voelker J; Miller JW
    J Renin Angiotensin Aldosterone Syst; 2017; 18(3):1470320317717883. PubMed ID: 28814143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of a whole-cell based medium throughput screening system for the discovery of human aldosterone synthase (CYP11B2) inhibitors: old drugs disclose new applications for the therapy of congestive heart failure, myocardial fibrosis and hypertension.
    Hakki T; Hübel K; Waldmann H; Bernhardt R
    J Steroid Biochem Mol Biol; 2011 May; 125(1-2):120-8. PubMed ID: 21193036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imidazopyridyl compounds as aldosterone synthase inhibitors.
    Whitehead BR; Lo MM; Ali A; Park MK; Hoyt SB; Xiong Y; Cai J; Carswell E; Cooke A; MacLean J; Ratcliffe P; Robinson J; Bennett DJ; Clemas JA; Wisniewski T; Struthers M; Cully D; MacNeil DJ
    Bioorg Med Chem Lett; 2017 Jan; 27(2):143-146. PubMed ID: 27979595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different effects of progesterone and estradiol on chimeric and wild type aldosterone synthase in vitro.
    Vecchiola A; Lagos CF; Fuentes CA; Allende F; Campino C; Valdivia C; Tapia-Castillo A; Ogishima T; Mukai K; Owen G; Solari S; Carvajal CA; Fardella CE
    Reprod Biol Endocrinol; 2013 Aug; 11():76. PubMed ID: 23938178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers.
    Kemnitzer W; Sirisoma N; May C; Tseng B; Drewe J; Cai SX
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3536-40. PubMed ID: 19464890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel pyridyl- or isoquinolinyl-substituted indolines and indoles as potent and selective aldosterone synthase inhibitors.
    Yin L; Hu Q; Emmerich J; Lo MM; Metzger E; Ali A; Hartmann RW
    J Med Chem; 2014 Jun; 57(12):5179-89. PubMed ID: 24899257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure.
    Suzuki D; Saito-Hakoda A; Ito R; Shimizu K; Parvin R; Shimada H; Noro E; Suzuki S; Fujiwara I; Kagechika H; Rainey WE; Kure S; Ito S; Yokoyama A; Sugawara A
    PLoS One; 2017; 12(8):e0181055. PubMed ID: 28800627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and evaluation of (pyridylmethylene)tetrahydronaphthalenes/-indanes and structurally modified derivatives: potent and selective inhibitors of aldosterone synthase.
    Ulmschneider S; Müller-Vieira U; Klein CD; Antes I; Lengauer T; Hartmann RW
    J Med Chem; 2005 Mar; 48(5):1563-75. PubMed ID: 15743198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC).
    Zimmermann J; Caravatti G; Mett H; Meyer T; Müller M; Lydon NB; Fabbro D
    Arch Pharm (Weinheim); 1996 Jul; 329(7):371-6. PubMed ID: 8764886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective aldosterone synthase inhibitors reduce aldosterone formation in vitro and in vivo.
    Ries C; Lucas S; Heim R; Birk B; Hartmann RW
    J Steroid Biochem Mol Biol; 2009 Sep; 116(3-5):121-6. PubMed ID: 19427380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: synthesis, SAR analysis, X-ray crystallography, and biological activity.
    Wang S; Meades C; Wood G; Osnowski A; Anderson S; Yuill R; Thomas M; Mezna M; Jackson W; Midgley C; Griffiths G; Fleming I; Green S; McNae I; Wu SY; McInnes C; Zheleva D; Walkinshaw MD; Fischer PM
    J Med Chem; 2004 Mar; 47(7):1662-75. PubMed ID: 15027857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17.
    Nakamura Y; Kitada M; Satoh F; Maekawa T; Morimoto R; Yamazaki Y; Ise K; Gomez-Sanchez CE; Ito S; Arai Y; Dezawa M; Sasano H
    Mol Cell Endocrinol; 2016 Feb; 422():57-63. PubMed ID: 26597777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coexpression of CYP11B2 or CYP11B1 with adrenodoxin and adrenodoxin reductase for assessing the potency and selectivity of aldosterone synthase inhibitors.
    LaSala D; Shibanaka Y; Jeng AY
    Anal Biochem; 2009 Nov; 394(1):56-61. PubMed ID: 19622340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heteroaryl-substituted naphthalenes and structurally modified derivatives: selective inhibitors of CYP11B2 for the treatment of congestive heart failure and myocardial fibrosis.
    Voets M; Antes I; Scherer C; Müller-Vieira U; Biemel K; Barassin C; Marchais-Oberwinkler S; Hartmann RW
    J Med Chem; 2005 Oct; 48(21):6632-42. PubMed ID: 16220979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico selectivity modeling of pyridine and pyrimidine based CYP11B1 and CYP11B2 inhibitors: A case study.
    Matore BW; Banjare P; Singh J; Roy PP
    J Mol Graph Model; 2022 Nov; 116():108238. PubMed ID: 35691091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional maturation of the primate fetal adrenal in vivo: 3. Specific zonal localization and developmental regulation of CYP21A2 (P450c21) and CYP11B1/CYP11B2 (P450c11/aldosterone synthase) lead to integrated concept of zonal and temporal steroid biosynthesis.
    Coulter CL; Jaffe RB
    Endocrinology; 1998 Dec; 139(12):5144-50. PubMed ID: 9832454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.