These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28360863)

  • 1. Differences in Oral Structure and Tissue Interactions during Mouse vs. Human Palatogenesis: Implications for the Translation of Findings from Mice.
    Yu K; Deng M; Naluai-Cecchini T; Glass IA; Cox TC
    Front Physiol; 2017; 8():154. PubMed ID: 28360863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro mouse model of cleft palate: defining a critical intershelf distance necessary for palatal clefting.
    Erfani S; Maldonado TS; Crisera CA; Warren SM; Lee S; Longaker MT
    Plast Reconstr Surg; 2001 Aug; 108(2):403-10. PubMed ID: 11496182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closing the Gap: Mouse Models to Study Adhesion in Secondary Palatogenesis.
    Lough KJ; Byrd KM; Spitzer DC; Williams SE
    J Dent Res; 2017 Oct; 96(11):1210-1220. PubMed ID: 28817360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of the Epithelial Cell Behavior in the Nasal Septum During Primary Palate Closure in Mice.
    Yamamoto S; Kurosaka H; Miura J; Aoyama G; Sarper SE; Oka A; Inubushi T; Nakatsugawa K; Usami Y; Toyosawa S; Yamashiro T
    Front Physiol; 2020; 11():538835. PubMed ID: 33123019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY
    J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C; Lan Y; Krumlauf R; Jiang R
    J Dent Res; 2017 Oct; 96(11):1273-1281. PubMed ID: 28692808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development.
    Bush JO; Jiang R
    Development; 2012 Jan; 139(2):231-43. PubMed ID: 22186724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans.
    Funato N; Yanagisawa H
    Arch Oral Biol; 2018 Nov; 95():149-155. PubMed ID: 30121012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association between palatal morphogenesis and Pax9 expression pattern in CL/Fr embryos with clefting during palatal development.
    Hamachi T; Sasaki Y; Hidaka K; Nakata M
    Arch Oral Biol; 2003 Aug; 48(8):581-7. PubMed ID: 12828987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative method for defining high-arched palate using the Tcof1(+/-) mutant mouse as a model.
    Conley ZR; Hague M; Kurosaka H; Dixon J; Dixon MJ; Trainor PA
    Dev Biol; 2016 Jul; 415(2):296-305. PubMed ID: 26772999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological observations in normal primary palate and cleft lip embryos in the Kyoto collection.
    Diewert VM; Shiota K
    Teratology; 1990 Jun; 41(6):663-77. PubMed ID: 2353315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and spatial expression of Hoxa-2 during murine palatogenesis.
    Nazarali A; Puthucode R; Leung V; Wolf L; Hao Z; Yeung J
    Cell Mol Neurobiol; 2000 Jun; 20(3):269-90. PubMed ID: 10789828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphometric analysis of secondary palate development in human embryos.
    Nohara A; Owaki N; Matsubayashi J; Katsube M; Imai H; Yoneyama A; Yamada S; Kanahashi T; Takakuwa T
    J Anat; 2022 Dec; 241(6):1287-1302. PubMed ID: 35983845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of palatal clefting in the Col11a1 mutant mouse.
    Lavrin IO; McLean W; Seegmiller RE; Olsen BR; Hay ED
    Arch Oral Biol; 2001 Sep; 46(9):865-9. PubMed ID: 11420059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palatal fusion - where do the midline cells go? A review on cleft palate, a major human birth defect.
    Dudas M; Li WY; Kim J; Yang A; Kaartinen V
    Acta Histochem; 2007; 109(1):1-14. PubMed ID: 16962647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The etiology of cleft palate formation in BMP7-deficient mice.
    Kouskoura T; Kozlova A; Alexiou M; Blumer S; Zouvelou V; Katsaros C; Chiquet M; Mitsiadis TA; Graf D
    PLoS One; 2013; 8(3):e59463. PubMed ID: 23516636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of apoptosis in retinoic acid-induced cleft palate.
    Choi JW; Park HW; Kwon YJ; Park BY
    J Craniofac Surg; 2011 Sep; 22(5):1567-71. PubMed ID: 21959388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleft Palate in Apert Syndrome.
    Willie D; Holmes G; Jabs EW; Wu M
    J Dev Biol; 2022 Aug; 10(3):. PubMed ID: 35997397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in vascular pattern of the developing palate in normal and spontaneous cleft palate mouse embryos.
    Amin N; Ohashi Y; Chiba J; Yoshida S; Takano Y
    Cleft Palate Craniofac J; 1994 Sep; 31(5):332-44. PubMed ID: 7986793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent insights into the morphological diversity in the amniote primary and secondary palates.
    Abramyan J; Richman JM
    Dev Dyn; 2015 Dec; 244(12):1457-68. PubMed ID: 26293818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.