These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2836092)

  • 1. Primary structure of a gene for subunit V of the cytochrome c oxidase from Saccharomyces cerevisiae.
    Séraphin B; Simon M; Faye G
    Curr Genet; 1985; 9(6):435-9. PubMed ID: 2836092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit IV of yeast cytochrome c oxidase: cloning and nucleotide sequencing of the gene and partial amino acid sequencing of the mature protein.
    Maarse AC; Van Loon AP; Riezman H; Gregor I; Schatz G; Grivell LA
    EMBO J; 1984 Dec; 3(12):2831-7. PubMed ID: 6098449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of QCR9, a nuclear gene encoding the 7.3-kDa subunit 9 of the Saccharomyces cerevisiae ubiquinol-cytochrome c oxidoreductase complex. An intron-containing gene with a conserved sequence occurring in the intron of COX4.
    Phillips JD; Schmitt ME; Brown TA; Beckmann JD; Trumpower BL
    J Biol Chem; 1990 Dec; 265(34):20813-21. PubMed ID: 2174427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequence of the gene encoding cytochrome c oxidase subunit VII from Saccharomyces cerevisiae.
    Calder KM; McEwen JE
    Nucleic Acids Res; 1990 Mar; 18(6):1632. PubMed ID: 2158084
    [No Abstract]   [Full Text] [Related]  

  • 5. Isolation and characterization of COX12, the nuclear gene for a previously unrecognized subunit of Saccharomyces cerevisiae cytochrome c oxidase.
    LaMarche AE; Abate MI; Chan SH; Trumpower BL
    J Biol Chem; 1992 Nov; 267(31):22473-80. PubMed ID: 1331057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subunit VIa of yeast cytochrome c oxidase is not necessary for assembly of the enzyme complex but modulates the enzyme activity. Isolation and characterization of the nuclear-coded gene.
    Taanman JW; Capaldi RA
    J Biol Chem; 1993 Sep; 268(25):18754-61. PubMed ID: 8395517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into topological and functional relationships of cytochrome c oxidase subunit I of Saccharomyces cerevisiae by means of intragenic complementation.
    Meunier B; Coster F; Lemarre P; Colson AM
    FEBS Lett; 1993 Apr; 321(2-3):159-62. PubMed ID: 8386676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear genes for mitochondrial proteins. Identification and isolation of a structural gene for subunit V of yeast cytochrome c oxidase.
    Cumsky MG; McEwen JE; Ko C; Poyton RO
    J Biol Chem; 1983 Nov; 258(22):13418-21. PubMed ID: 6315696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and sequence of the structural gene for cytochrome c oxidase subunit VI from Saccharomyces cerevisiae.
    Wright RM; Ko C; Cumsky MG; Poyton RO
    J Biol Chem; 1984 Dec; 259(24):15401-7. PubMed ID: 6210289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first twelve amino acids (less than half of the pre-sequence) of an imported mitochondrial protein can direct mouse cytosolic dihydrofolate reductase into the yeast mitochondrial matrix.
    Hurt EC; Pesold-Hurt B; Suda K; Oppliger W; Schatz G
    EMBO J; 1985 Aug; 4(8):2061-8. PubMed ID: 2998781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial import of cytochrome c oxidase subunit VIIa in Saccharomyces cerevisiae. Identification of sequences required for mitochondrial localization in vivo.
    Duhl DM; Powell T; Poyton RO
    J Biol Chem; 1990 May; 265(13):7273-7. PubMed ID: 2158998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a yeast nuclear gene involved in the maturation of mitochondrial pre-messenger RNA of the cytochrome oxidase subunit I.
    Faye G; Simon M
    Cell; 1983 Jan; 32(1):77-87. PubMed ID: 6297789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and function of cytochrome c oxidase subunit isologues. Modulators of cellular energy production?
    Poyton RO; Trueblood CE; Wright RM; Farrell LE
    Ann N Y Acad Sci; 1988; 550():289-307. PubMed ID: 2854400
    [No Abstract]   [Full Text] [Related]  

  • 14. Structural analysis of two genes encoding divergent forms of yeast cytochrome c oxidase subunit V.
    Cumsky MG; Trueblood CE; Ko C; Poyton RO
    Mol Cell Biol; 1987 Oct; 7(10):3511-9. PubMed ID: 2824989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast cytochrome c oxidase subunit VII is essential for assembly of an active enzyme. Cloning, sequencing, and characterization of the nuclear-encoded gene.
    Aggeler R; Capaldi RA
    J Biol Chem; 1990 Sep; 265(27):16389-93. PubMed ID: 2168889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COX8, the structural gene for yeast cytochrome c oxidase subunit VIII. DNA sequence and gene disruption indicate that subunit VIII is required for maximal levels of cellular respiration and is derived from a precursor which is extended at both its NH2 and COOH termini.
    Patterson TE; Poyton RO
    J Biol Chem; 1986 Dec; 261(36):17192-7. PubMed ID: 3023386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence of the mitochondrial cytochrome oxidase subunit II gene in the yeast Hansenula saturnus.
    Lawson JE; Deters DW
    Curr Genet; 1985; 9(5):351-60. PubMed ID: 2836090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of COX9, the nuclear gene encoding the yeast mitochondrial protein cytochrome c oxidase subunit VIIa. Subunit VIIa lacks a leader peptide and is an essential component of the holoenzyme.
    Wright RM; Dircks LK; Poyton RO
    J Biol Chem; 1986 Dec; 261(36):17183-91. PubMed ID: 3023385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear functions required for cytochrome c oxidase biogenesis in Saccharomyces cerevisiae: multiple trans-acting nuclear genes exert specific effects on expression of each of the cytochrome c oxidase subunits encoded on mitochondrial DNA.
    Kloeckener-Gruissem B; McEwen JE; Poyton RO
    Curr Genet; 1987; 12(5):311-22. PubMed ID: 2833360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity.
    Lemire BD; Fankhauser C; Baker A; Schatz G
    J Biol Chem; 1989 Dec; 264(34):20206-15. PubMed ID: 2555347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.