These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 28360936)

  • 1. Hybridization and adaptive evolution of diverse
    Peris D; Moriarty RV; Alexander WG; Baker E; Sylvester K; Sardi M; Langdon QK; Libkind D; Wang QM; Bai FY; Leducq JB; Charron G; Landry CR; Sampaio JP; Gonçalves P; Hyma KE; Fay JC; Sato TK; Hittinger CT
    Biotechnol Biofuels; 2017; 10():78. PubMed ID: 28360936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX™ pretreated corn stover.
    Jin M; Sarks C; Gunawan C; Bice BD; Simonett SP; Avanasi Narasimhan R; Willis LB; Dale BE; Balan V; Sato TK
    Biotechnol Biofuels; 2013; 6():108. PubMed ID: 23890073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.
    Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB
    Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate.
    Ong RG; Higbee A; Bottoms S; Dickinson Q; Xie D; Smith SA; Serate J; Pohlmann E; Jones AD; Coon JJ; Sato TK; Sanford GR; Eilert D; Oates LG; Piotrowski JS; Bates DM; Cavalier D; Zhang Y
    Biotechnol Biofuels; 2016; 9():237. PubMed ID: 27826356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.
    Demeke MM; Dumortier F; Li Y; Broeckx T; Foulquié-Moreno MR; Thevelein JM
    Biotechnol Biofuels; 2013 Aug; 6(1):120. PubMed ID: 23971950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production.
    Lau MW; Gunawan C; Balan V; Dale BE
    Biotechnol Biofuels; 2010 May; 3():11. PubMed ID: 20507563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Gre2p improves tolerance of engineered xylose-fermenting Saccharomyces cerevisiae to glycolaldehyde under xylose metabolism.
    Jayakody LN; Turner TL; Yun EJ; Kong II; Liu JJ; Jin YS
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8121-8133. PubMed ID: 30027490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover.
    Uppugundla N; da Costa Sousa L; Chundawat SP; Yu X; Simmons B; Singh S; Gao X; Kumar R; Wyman CE; Dale BE; Balan V
    Biotechnol Biofuels; 2014; 7():72. PubMed ID: 24917886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production.
    Wagner ER; Myers KS; Riley NM; Coon JJ; Gasch AP
    PLoS One; 2019; 14(5):e0212389. PubMed ID: 31112537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids.
    Krogerus K; Seppänen-Laakso T; Castillo S; Gibson B
    Microb Cell Fact; 2017 Apr; 16(1):66. PubMed ID: 28431563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production.
    Wohlbach DJ; Rovinskiy N; Lewis JA; Sardi M; Schackwitz WS; Martin JA; Deshpande S; Daum CG; Lipzen A; Sato TK; Gasch AP
    Genome Biol Evol; 2014 Sep; 6(9):2557-66. PubMed ID: 25364804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance.
    Sardi M; Rovinskiy N; Zhang Y; Gasch AP
    Appl Environ Microbiol; 2016 Oct; 82(19):5838-49. PubMed ID: 27451446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method.
    Zhang W; Geng A
    Biotechnol Biofuels; 2012 Jul; 5(1):46. PubMed ID: 22809265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered
    Cunha JT; Soares PO; Baptista SL; Costa CE; Domingues L
    Bioengineered; 2020 Dec; 11(1):883-903. PubMed ID: 32799606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.
    Ho NW; Chen Z; Brainard AP; Sedlak M
    Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designer synthetic media for studying microbial-catalyzed biofuel production.
    Tang X; da Costa Sousa L; Jin M; Chundawat SP; Chambliss CK; Lau MW; Xiao Z; Dale BE; Balan V
    Biotechnol Biofuels; 2015; 8(1):1. PubMed ID: 25642283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.