These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 28360938)
1. Ainala SK; Seol E; Kim JR; Park S Biotechnol Biofuels; 2017; 10():80. PubMed ID: 28360938 [TBL] [Abstract][Full Text] [Related]
2. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator. Lee CR; Kim C; Song YE; Im H; Oh YK; Park S; Kim JR Bioresour Technol; 2018 Jul; 259():128-135. PubMed ID: 29549832 [TBL] [Abstract][Full Text] [Related]
3. Complete genome sequence of novel carbon monoxide oxidizing bacteria Citrobacter amalonaticus Y19, assembled de novo. Ainala SK; Seol E; Park S J Biotechnol; 2015 Oct; 211():79-80. PubMed ID: 26210290 [TBL] [Abstract][Full Text] [Related]
4. Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Ainala SK; Ashok S; Ko Y; Park S Appl Microbiol Biotechnol; 2013 Jun; 97(11):5001-11. PubMed ID: 23377788 [TBL] [Abstract][Full Text] [Related]
5. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19. Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473 [TBL] [Abstract][Full Text] [Related]
7. The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H Kochetkova TV; Mardanov AV; Sokolova TG; Bonch-Osmolovskaya EA; Kublanov IV; Kevbrin VV; Beletsky AV; Ravin NV; Lebedinsky AV Syst Appl Microbiol; 2020 Mar; 43(2):126064. PubMed ID: 32044151 [TBL] [Abstract][Full Text] [Related]
8. Screening of a novel strong promoter by RNA sequencing and its application to H2 production in a hyperthermophilic archaeon. Lee SH; Kim MS; Jung HC; Lee J; Lee JH; Lee HS; Kang SG Appl Microbiol Biotechnol; 2015 May; 99(9):4085-92. PubMed ID: 25690310 [TBL] [Abstract][Full Text] [Related]
9. A novel CO-responsive transcriptional regulator and enhanced H2 production by an engineered Thermococcus onnurineus NA1 strain. Kim MS; Choi AR; Lee SH; Jung HC; Bae SS; Yang TJ; Jeon JH; Lim JK; Youn H; Kim TW; Lee HS; Kang SG Appl Environ Microbiol; 2015 Mar; 81(5):1708-14. PubMed ID: 25548050 [TBL] [Abstract][Full Text] [Related]
10. CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1. Kim MS; Bae SS; Kim YJ; Kim TW; Lim JK; Lee SH; Choi AR; Jeon JH; Lee JH; Lee HS; Kang SG Appl Environ Microbiol; 2013 Mar; 79(6):2048-53. PubMed ID: 23335765 [TBL] [Abstract][Full Text] [Related]
11. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO Carlson ED; Papoutsakis ET Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by Escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. Mnatsakanyan N; Bagramyan K; Trchounian A Cell Biochem Biophys; 2004; 41(3):357-66. PubMed ID: 15509886 [TBL] [Abstract][Full Text] [Related]
13. CO-dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius. Mohr T; Aliyu H; Küchlin R; Polliack S; Zwick M; Neumann A; Cowan D; de Maayer P Microb Cell Fact; 2018 Jul; 17(1):108. PubMed ID: 29986719 [TBL] [Abstract][Full Text] [Related]
14. Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol. Trchounian K; Soboh B; Sawers RG; Trchounian A Cell Biochem Biophys; 2013 May; 66(1):103-8. PubMed ID: 23090790 [TBL] [Abstract][Full Text] [Related]
15. CO Metabolism in the Thermophilic Acetogen Thermoanaerobacter kivui. Weghoff MC; Müller V Appl Environ Microbiol; 2016 Apr; 82(8):2312-2319. PubMed ID: 26850300 [TBL] [Abstract][Full Text] [Related]
16. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis. Liew F; Henstra AM; Winzer K; Köpke M; Simpson SD; Minton NP mBio; 2016 May; 7(3):. PubMed ID: 27222467 [TBL] [Abstract][Full Text] [Related]
17. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Singer SW; Hirst MB; Ludden PW Biochim Biophys Acta; 2006 Dec; 1757(12):1582-91. PubMed ID: 17123462 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis. Cavazza C; Collin-Faure V; Pérard J; Diemer H; Cianférani S; Rabilloud T; Darrouzet E J Proteomics; 2022 Jan; 250():104389. PubMed ID: 34601154 [TBL] [Abstract][Full Text] [Related]
19. The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. Bagramyan K; Mnatsakanyan N; Poladian A; Vassilian A; Trchounian A FEBS Lett; 2002 Apr; 516(1-3):172-8. PubMed ID: 11959127 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. Fox JD; Kerby RL; Roberts GP; Ludden PW J Bacteriol; 1996 Mar; 178(6):1515-24. PubMed ID: 8626276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]