These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28361143)

  • 1. Automatic generation of reaction energy databases from highly accurate atomization energy benchmark sets.
    Margraf JT; Ranasinghe DS; Bartlett RJ
    Phys Chem Chem Phys; 2017 Apr; 19(15):9798-9805. PubMed ID: 28361143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics.
    Karton A; Tarnopolsky A; Lamère JF; Schatz GC; Martin JM
    J Phys Chem A; 2008 Dec; 112(50):12868-86. PubMed ID: 18714947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. W4-17: A diverse and high-confidence dataset of atomization energies for benchmarking high-level electronic structure methods.
    Karton A; Sylvetsky N; Martin JML
    J Comput Chem; 2017 Sep; 38(24):2063-2075. PubMed ID: 28675494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Databases for transition element bonding: metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations.
    Schultz NE; Zhao Y; Truhlar DG
    J Phys Chem A; 2005 May; 109(19):4388-403. PubMed ID: 16833770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules.
    Nemec N; Towler MD; Needs RJ
    J Chem Phys; 2010 Jan; 132(3):034111. PubMed ID: 20095732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Effective Core Method (Effective Core Potential and Valence Basis Set) for Al Clusters and Nanoparticles and Heteronuclear Al-Containing Molecules.
    Schultz NE; Truhlar DG
    J Chem Theory Comput; 2005 Jan; 1(1):41-53. PubMed ID: 26641114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to compute isomerization energies of organic molecules with quantum chemical methods.
    Grimme S; Steinmetz M; Korth M
    J Org Chem; 2007 Mar; 72(6):2118-26. PubMed ID: 17286442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations.
    Grimme S
    J Chem Theory Comput; 2014 Oct; 10(10):4497-514. PubMed ID: 26588146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation energy extrapolation by intrinsic scaling. V. Electronic energy, atomization energy, and enthalpy of formation of water.
    Bytautas L; Ruedenberg K
    J Chem Phys; 2006 May; 124(17):174304. PubMed ID: 16689568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range corrected density functional calculations of chemical reactions: redetermination of parameter.
    Song JW; Hirosawa T; Tsuneda T; Hirao K
    J Chem Phys; 2007 Apr; 126(15):154105. PubMed ID: 17461612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Complex-Valued Optimal Orbitals on Atomization Energies with the Perdew-Zunger Self-Interaction Correction to Density Functional Theory.
    Lehtola S; Jónsson EÖ; Jónsson H
    J Chem Theory Comput; 2016 Sep; 12(9):4296-302. PubMed ID: 27467900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies.
    McKechnie S; Booth GH; Cohen AJ; Cole JM
    J Chem Phys; 2015 May; 142(19):194114. PubMed ID: 26001454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-hybrid density-functional theory made rigorous.
    Sharkas K; Toulouse J; Savin A
    J Chem Phys; 2011 Feb; 134(6):064113. PubMed ID: 21322667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization potential optimized double-hybrid density functional approximations.
    Margraf JT; Verma P; Bartlett RJ
    J Chem Phys; 2016 Sep; 145(10):104106. PubMed ID: 27634250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simplified CCSD(T)-F12 methods: theory and benchmarks.
    Knizia G; Adler TB; Werner HJ
    J Chem Phys; 2009 Feb; 130(5):054104. PubMed ID: 19206955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.