These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28361538)

  • 1. Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles.
    Pernpeintner C; Frank JA; Urban P; Roeske CR; Pritzl SD; Trauner D; Lohmüller T
    Langmuir; 2017 Apr; 33(16):4083-4089. PubMed ID: 28361538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles.
    Urban P; Pritzl SD; Konrad DB; Frank JA; Pernpeintner C; Roeske CR; Trauner D; Lohmüller T
    Langmuir; 2018 Nov; 34(44):13368-13374. PubMed ID: 30346771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Membrane Control with Red Light Enabled by Red-Shifted Photolipids.
    Pritzl SD; Konrad DB; Ober MF; Richter AF; Frank JA; Nickel B; Trauner D; Lohmüller T
    Langmuir; 2022 Jan; 38(1):385-393. PubMed ID: 34969246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynthetic Photocontrol of Giant Liposomes via Fusion-Based Photolipid Doping.
    Pritzl SD; Morstein J; Kahler S; Konrad DB; Trauner D; Lohmüller T
    Langmuir; 2022 Oct; 38(39):11941-11949. PubMed ID: 36130117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.
    Uda RM; Yoshikawa Y; Kitaba M; Nishimoto N
    Colloids Surf B Biointerfaces; 2018 Jul; 167():544-549. PubMed ID: 29730576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible photoswitching in a cell-sized vesicle.
    Hamada T; Sato YT; Yoshikawa K; Nagasaki T
    Langmuir; 2005 Aug; 21(17):7626-8. PubMed ID: 16089361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.
    Kamiya K; Kawano R; Osaki T; Akiyoshi K; Takeuchi S
    Nat Chem; 2016 Sep; 8(9):881-9. PubMed ID: 27554415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant vesicles: preparations and applications.
    Walde P; Cosentino K; Engel H; Stano P
    Chembiochem; 2010 May; 11(7):848-65. PubMed ID: 20336703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological variation of a lipid vesicle confined in a spherical vesicle.
    Sakashita A; Imai M; Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):040701. PubMed ID: 24827172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant vesicles under oxidative stress induced by a membrane-anchored photosensitizer.
    Riske KA; Sudbrack TP; Archilha NL; Uchoa AF; Schroder AP; Marques CM; Baptista MS; Itri R
    Biophys J; 2009 Sep; 97(5):1362-70. PubMed ID: 19720024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focused characteristics and effects of light reflected from spherical lipid membrane of giant unilamellar vesicles.
    Qiao H; Wei Z; Wang Y; Hu N; Sun S; Bai J; Fang L; Wang Z
    Colloids Surf B Biointerfaces; 2020 May; 189():110828. PubMed ID: 32028133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
    Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R
    Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging the lipid bilayer of giant unilamellar vesicles using red-to-blue light upconversion.
    Askes SH; López Mora N; Harkes R; Koning RI; Koster B; Schmidt T; Kros A; Bonnet S
    Chem Commun (Camb); 2015 Jun; 51(44):9137-40. PubMed ID: 25940614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic deformation of lipid bilayer vesicles.
    Wu SH; Sankhagowit S; Biswas R; Wu S; Povinelli ML; Malmstadt N
    Soft Matter; 2015 Oct; 11(37):7385-91. PubMed ID: 26268612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical damage on giant vesicles membrane as a result of methylene blue photoirradiation.
    Mertins O; Bacellar IO; Thalmann F; Marques CM; Baptista MS; Itri R
    Biophys J; 2014 Jan; 106(1):162-71. PubMed ID: 24411248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic evolution of DOPC lipid bilayers exposed to α-cyclodextrins.
    Kluzek M; Schmutz M; Marques CM; Thalmann F
    Soft Matter; 2018 Jul; 14(28):5800-5810. PubMed ID: 29947414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-induced Morphological Changes of Lipid Bilayer Vesicles Enabled by a Visible-Light-Responsive Azo Compound.
    Kasai K; Nagahora N; Okuma K; Matsubara K; Shioji K
    J Oleo Sci; 2022 Apr; 71(5):747-757. PubMed ID: 35387916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bending rigidity of charged lipid bilayer membranes.
    Faizi HA; Frey SL; Steinkühler J; Dimova R; Vlahovska PM
    Soft Matter; 2019 Jul; 15(29):6006-6013. PubMed ID: 31298256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolipid Bilayer Permeability is Controlled by Transient Pore Formation.
    Pritzl SD; Urban P; Prasselsperger A; Konrad DB; Frank JA; Trauner D; Lohmüller T
    Langmuir; 2020 Nov; 36(45):13509-13515. PubMed ID: 33143416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.