BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 28361672)

  • 1. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy.
    Dias R; Kolazckowski B
    Proteins; 2015 Nov; 83(11):2100-14. PubMed ID: 26370248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
    Ouyang X; Handoko SD; Kwoh CK
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():1-14. PubMed ID: 22144250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction.
    Cheng T; Liu Z; Wang R
    BMC Bioinformatics; 2010 Apr; 11():193. PubMed ID: 20398404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-based scoring functions in drug design: 2. Can the knowledge base be enriched?
    Shen Q; Xiong B; Zheng M; Luo X; Luo C; Liu X; Du Y; Li J; Zhu W; Shen J; Jiang H
    J Chem Inf Model; 2011 Feb; 51(2):386-97. PubMed ID: 21192670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.
    Li H; Leung KS; Wong MH; Ballester PJ
    BMC Bioinformatics; 2014 Aug; 15(1):291. PubMed ID: 25159129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution crystal structures leverage protein binding affinity predictions.
    Marillet S; Boudinot P; Cazals F
    Proteins; 2016 Jan; 84(1):9-20. PubMed ID: 26471944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction.
    Fan FJ; Shi Y
    Bioorg Med Chem; 2022 Oct; 72():117003. PubMed ID: 36103795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General and targeted statistical potentials for protein-ligand interactions.
    Mooij WT; Verdonk ML
    Proteins; 2005 Nov; 61(2):272-87. PubMed ID: 16106379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation.
    Grudinin S; Kadukova M; Eisenbarth A; Marillet S; Cazals F
    J Comput Aided Mol Des; 2016 Sep; 30(9):791-804. PubMed ID: 27718029
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.