These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 28361678)
1. DIGNiFI: Discovering causative genes for orphan diseases using protein-protein interaction networks. Liu X; Yang Z; Lin H; Simmons M; Lu Z BMC Syst Biol; 2017 Mar; 11(Suppl 3):23. PubMed ID: 28361678 [TBL] [Abstract][Full Text] [Related]
2. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068 [TBL] [Abstract][Full Text] [Related]
3. A vertex similarity-based framework to discover and rank orphan disease-related genes. Zhu C; Kushwaha A; Berman K; Jegga AG BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S8. PubMed ID: 23281592 [TBL] [Abstract][Full Text] [Related]
4. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW; Shao DD; Zhang SY; Wang YB Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [TBL] [Abstract][Full Text] [Related]
5. PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology. Gioutlakis A; Klapa MI; Moschonas NK PLoS One; 2017; 12(10):e0186039. PubMed ID: 29023571 [TBL] [Abstract][Full Text] [Related]
6. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. Fernando PC; Mabee PM; Zeng E BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186 [TBL] [Abstract][Full Text] [Related]
7. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data. Luo J; Liang S J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206 [TBL] [Abstract][Full Text] [Related]
9. Using the Gene Ontology tool to produce de novo protein-protein interaction networks with IS_A relationship. Oliveira GS; Santos AR Genet Mol Res; 2016 Dec; 15(4):. PubMed ID: 28002604 [TBL] [Abstract][Full Text] [Related]
10. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency. Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273 [TBL] [Abstract][Full Text] [Related]
11. From communities to protein complexes: A local community detection algorithm on PPI networks. Dilmaghani S; Brust MR; Ribeiro CHC; Kieffer E; Danoy G; Bouvry P PLoS One; 2022; 17(1):e0260484. PubMed ID: 35085263 [TBL] [Abstract][Full Text] [Related]
12. Candidate gene discovery and prioritization in rare diseases. Jegga AG Methods Mol Biol; 2014; 1168():295-312. PubMed ID: 24870143 [TBL] [Abstract][Full Text] [Related]
13. Prioritization of candidate disease genes by combining topological similarity and semantic similarity. Liu B; Jin M; Zeng P J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039 [TBL] [Abstract][Full Text] [Related]
14. Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach. Zhang W; Sun F; Jiang R BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S11. PubMed ID: 21342540 [TBL] [Abstract][Full Text] [Related]
15. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information. Tang X; Hu X; Yang X; Fan Y; Li Y; Hu W; Liao Y; Zheng MC; Peng W; Gao L BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):433. PubMed ID: 27535125 [TBL] [Abstract][Full Text] [Related]
16. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030 [TBL] [Abstract][Full Text] [Related]
17. Integrating experimental and literature protein-protein interaction data for protein complex prediction. Zhang Y; Lin H; Yang Z; Wang J BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S4. PubMed ID: 25708571 [TBL] [Abstract][Full Text] [Related]
18. C-GRAAL: common-neighbors-based global GRAph ALignment of biological networks. Memišević V; Pržulj N Integr Biol (Camb); 2012 Jul; 4(7):734-43. PubMed ID: 22234340 [TBL] [Abstract][Full Text] [Related]
19. A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity. Zhang W; Xu J; Li X; Zou X IEEE Trans Nanobioscience; 2016 Dec; 15(8):939-945. PubMed ID: 27834650 [TBL] [Abstract][Full Text] [Related]
20. A New Method for Detecting Protein Complexes based on the Three Node Cliques. Zhang W; Zou X IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):879-86. PubMed ID: 26357329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]