These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28361687)
21. Application of Machine Learning Approaches for Protein-protein Interactions Prediction. Zhang M; Su Q; Lu Y; Zhao M; Niu B Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547 [TBL] [Abstract][Full Text] [Related]
22. In silico experiment system for testing hypothesis on gene functions using three condition specific biological networks. Lee CJ; Kang D; Lee S; Lee S; Kang J; Kim S Methods; 2018 Aug; 145():10-15. PubMed ID: 29758273 [TBL] [Abstract][Full Text] [Related]
23. EpiTracer - an algorithm for identifying epicenters in condition-specific biological networks. Sambaturu N; Mishra M; Chandra N BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):543. PubMed ID: 27556637 [TBL] [Abstract][Full Text] [Related]
24. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach. Mukhopadhyay A; Ray S; De M Mol Biosyst; 2012 Nov; 8(11):3036-48. PubMed ID: 22990765 [TBL] [Abstract][Full Text] [Related]
25. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways. Jo K; Jung I; Moon JH; Kim S Bioinformatics; 2016 Jun; 32(12):i128-i136. PubMed ID: 27307609 [TBL] [Abstract][Full Text] [Related]
26. NERI: network-medicine based integrative approach for disease gene prioritization by relative importance. Simões SN; Martins DC; Pereira CA; Hashimoto RF; Brentani H BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S9. PubMed ID: 26696568 [TBL] [Abstract][Full Text] [Related]
27. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data. Fu C; Deng S; Jin G; Wang X; Yu ZG BMC Syst Biol; 2017 Sep; 11(Suppl 4):81. PubMed ID: 28950903 [TBL] [Abstract][Full Text] [Related]
28. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer. Chen C; Shen H; Zhang LG; Liu J; Cao XG; Yao AL; Kang SS; Gao WX; Han H; Cao FH; Li ZG Int J Mol Med; 2016 Jun; 37(6):1576-86. PubMed ID: 27121963 [TBL] [Abstract][Full Text] [Related]
29. Identifying spurious interactions and predicting missing interactions in the protein-protein interaction networks via a generative network model. Zhu Y; Zhang XF; Dai DQ; Wu MY IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):219-25. PubMed ID: 23702559 [TBL] [Abstract][Full Text] [Related]
30. Identification of hepatocellular carcinoma related genes with k-th shortest paths in a protein-protein interaction network. Jiang M; Chen Y; Zhang Y; Chen L; Zhang N; Huang T; Cai YD; Kong X Mol Biosyst; 2013 Nov; 9(11):2720-8. PubMed ID: 24056857 [TBL] [Abstract][Full Text] [Related]
31. Detecting reliable non interacting proteins (NIPs) significantly enhancing the computational prediction of protein-protein interactions using machine learning methods. Srivastava A; Mazzocco G; Kel A; Wyrwicz LS; Plewczynski D Mol Biosyst; 2016 Mar; 12(3):778-85. PubMed ID: 26738778 [TBL] [Abstract][Full Text] [Related]
32. Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress. Jo K; Kwon HB; Kim S Methods; 2014 Jun; 67(3):364-72. PubMed ID: 24518221 [TBL] [Abstract][Full Text] [Related]
33. Centrality and the shortest path approach in the human interactome. Rubanova N; Morozova N J Bioinform Comput Biol; 2019 Aug; 17(4):1950027. PubMed ID: 31617463 [TBL] [Abstract][Full Text] [Related]
34. Core and specific network markers of carcinogenesis from multiple cancer samples. Wong YH; Chen RH; Chen BS J Theor Biol; 2014 Dec; 362():17-34. PubMed ID: 25016045 [TBL] [Abstract][Full Text] [Related]
35. Integrating experimental and literature protein-protein interaction data for protein complex prediction. Zhang Y; Lin H; Yang Z; Wang J BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S4. PubMed ID: 25708571 [TBL] [Abstract][Full Text] [Related]
36. PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology. Gioutlakis A; Klapa MI; Moschonas NK PLoS One; 2017; 12(10):e0186039. PubMed ID: 29023571 [TBL] [Abstract][Full Text] [Related]
37. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering. Theofilatos K; Pavlopoulou N; Papasavvas C; Likothanassis S; Dimitrakopoulos C; Georgopoulos E; Moschopoulos C; Mavroudi S Artif Intell Med; 2015 Mar; 63(3):181-9. PubMed ID: 25765008 [TBL] [Abstract][Full Text] [Related]
38. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation. Cao B; Luo J; Liang C; Wang S; Ding P IEEE Trans Nanobioscience; 2016 Oct; 15(7):728-738. PubMed ID: 27662678 [TBL] [Abstract][Full Text] [Related]
39. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Tang Y; Li M; Wang J; Pan Y; Wu FX Biosystems; 2015 Jan; 127():67-72. PubMed ID: 25451770 [TBL] [Abstract][Full Text] [Related]
40. Topological centrality-based identification of hub genes and pathways associated with acute viral respiratory infection in infants. Liu XY; Li GQ; Ma Y; Zhao LJ Genet Mol Res; 2015 Dec; 14(4):18334-43. PubMed ID: 26782481 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]