BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28361710)

  • 1. A framework for space-efficient read clustering in metagenomic samples.
    Alanko J; Cunial F; Belazzougui D; Mäkinen V
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):59. PubMed ID: 28361710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifuge: rapid and sensitive classification of metagenomic sequences.
    Kim D; Song L; Breitwieser FP; Salzberg SL
    Genome Res; 2016 Dec; 26(12):1721-1729. PubMed ID: 27852649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale metagenomic sequence clustering on map-reduce clusters.
    Yang X; Zola J; Aluru S
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340001. PubMed ID: 23427983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform.
    Baier U; Beller T; Ohlebusch E
    Bioinformatics; 2016 Feb; 32(4):497-504. PubMed ID: 26504144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error Tree: A Tree Structure for Hamming and Edit Distances and Wildcards Matching.
    Al-Okaily A
    J Comput Biol; 2015 Dec; 22(12):1118-28. PubMed ID: 26402070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ALFRED: A Practical Method for Alignment-Free Distance Computation.
    Thankachan SV; Chockalingam SP; Liu Y; Apostolico A; Aluru S
    J Comput Biol; 2016 Jun; 23(6):452-60. PubMed ID: 27138275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering huge protein sequence sets in linear time.
    Steinegger M; Söding J
    Nat Commun; 2018 Jun; 9(1):2542. PubMed ID: 29959318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Querying large read collections in main memory: a versatile data structure.
    Philippe N; Salson M; Lecroq T; Léonard M; Commes T; Rivals E
    BMC Bioinformatics; 2011 Jun; 12():242. PubMed ID: 21682852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binning Metagenomic Contigs Using Unsupervised Clustering and Reference Databases.
    Jiang Z; Li X; Guo L
    Interdiscip Sci; 2022 Dec; 14(4):795-803. PubMed ID: 35639335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the composition of species in metagenomes by clustering of next-generation read sequences.
    Seok HS; Hong W; Kim J
    Methods; 2014 Oct; 69(3):213-9. PubMed ID: 25072168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A space-efficient construction of the Burrows-Wheeler transform for genomic data.
    Lippert RA; Mobarry CM; Walenz BP
    J Comput Biol; 2005 Sep; 12(7):943-51. PubMed ID: 16201914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaProb: accurate metagenomic reads binning based on probabilistic sequence signatures.
    Girotto S; Pizzi C; Comin M
    Bioinformatics; 2016 Sep; 32(17):i567-i575. PubMed ID: 27587676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MBBC: an efficient approach for metagenomic binning based on clustering.
    Wang Y; Hu H; Li X
    BMC Bioinformatics; 2015 Feb; 16():36. PubMed ID: 25652152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient maximal repeat finding using the burrows-wheeler transform and wavelet tree.
    Külekci MO; Vitter JS; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):421-9. PubMed ID: 21968959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Metagenomic Binning via Hashing and Bayesian Clustering.
    Popic V; Kuleshov V; Snyder M; Batzoglou S
    J Comput Biol; 2018 Jul; 25(7):677-688. PubMed ID: 29658784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MetaCon: unsupervised clustering of metagenomic contigs with probabilistic k-mers statistics and coverage.
    Qian J; Comin M
    BMC Bioinformatics; 2019 Nov; 20(Suppl 9):367. PubMed ID: 31757198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the
    Kempa D; Kociumaka T
    Proc Annu ACM SIAM Symp Discret Algorithms; 2023; 2023():5122-5202. PubMed ID: 38835617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressed suffix tree--a basis for genome-scale sequence analysis.
    Välimäki N; Gerlach W; Dixit K; Mäkinen V
    Bioinformatics; 2007 Mar; 23(5):629-30. PubMed ID: 17237063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeny-based classification of microbial communities.
    Tanaseichuk O; Borneman J; Jiang T
    Bioinformatics; 2014 Feb; 30(4):449-56. PubMed ID: 24369151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.