These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28361947)

  • 1. Mapping ECoG channel contributions to trajectory and muscle activity prediction in human sensorimotor cortex.
    Nakanishi Y; Yanagisawa T; Shin D; Kambara H; Yoshimura N; Tanaka M; Fukuma R; Kishima H; Hirata M; Koike Y
    Sci Rep; 2017 Mar; 7():45486. PubMed ID: 28361947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex.
    Nakanishi Y; Yanagisawa T; Shin D; Fukuma R; Chen C; Kambara H; Yoshimura N; Hirata M; Yoshimine T; Koike Y
    PLoS One; 2013; 8(8):e72085. PubMed ID: 23991046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of reaching movement trajectories using electrocorticographic signals in humans.
    Talakoub O; Marquez-Chin C; Popovic MR; Navarro J; Fonoff ET; Hamani C; Wong W
    PLoS One; 2017; 12(9):e0182542. PubMed ID: 28931054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of arm movement trajectories from ECoG-recordings in humans.
    Pistohl T; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C
    J Neurosci Methods; 2008 Jan; 167(1):105-14. PubMed ID: 18022247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding of muscle activity from the sensorimotor cortex in freely behaving monkeys.
    Umeda T; Koizumi M; Katakai Y; Saito R; Seki K
    Neuroimage; 2019 Aug; 197():512-526. PubMed ID: 31015029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of muscle activities from electrocorticograms in primary motor cortex of primates.
    Shin D; Watanabe H; Kambara H; Nambu A; Isa T; Nishimura Y; Koike Y
    PLoS One; 2012; 7(10):e47992. PubMed ID: 23110153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of hand trajectory from electrocorticography signals in primary motor cortex.
    Chen C; Shin D; Watanabe H; Nakanishi Y; Kambara H; Yoshimura N; Nambu A; Isa T; Nishimura Y; Koike Y
    PLoS One; 2013; 8(12):e83534. PubMed ID: 24386223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of a Robot Arm Using Decoded Joint Angles from Electrocorticograms in Primate.
    Shin D; Kambara H; Yoshimura N; Koike Y
    Comput Intell Neurosci; 2018; 2018():2580165. PubMed ID: 30420874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study.
    Li Y; Zhang S; Jin Y; Cai B; Controzzi M; Zhu J; Zhang J; Zheng X
    Behav Neurol; 2017; 2017():3435686. PubMed ID: 29104374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement type prediction before its onset using signals from prefrontal area: an electrocorticography study.
    Ryun S; Kim JS; Lee SH; Jeong S; Kim SP; Chung CK
    Biomed Res Int; 2014; 2014():783203. PubMed ID: 25126578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements.
    Sun H; Blakely TM; Darvas F; Wander JD; Johnson LA; Su DK; Miller KJ; Fetz EE; Ojemann JG
    Clin Neurophysiol; 2015 Nov; 126(11):2150-61. PubMed ID: 25680948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex spatiotemporal tuning in human upper-limb muscles.
    Pruszynski JA; Lillicrap TP; Scott SH
    J Neurophysiol; 2010 Jan; 103(1):564-72. PubMed ID: 19923243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
    Flint RD; Tate MC; Li K; Templer JW; Rosenow JM; Pandarinath C; Slutzky MW
    eNeuro; 2020; 7(4):. PubMed ID: 32769159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural decoding using gyral and intrasulcal electrocorticograms.
    Yanagisawa T; Hirata M; Saitoh Y; Kato A; Shibuya D; Kamitani Y; Yoshimine T
    Neuroimage; 2009 May; 45(4):1099-106. PubMed ID: 19349227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding hand trajectories from micro-electrocorticography in human patients.
    Kellis S; Hanrahan S; Davis T; House PA; Brown R; Greger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4091-4. PubMed ID: 23366827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-free electrocorticography frequency mapping of the motor cortex.
    Vansteensel MJ; Bleichner MG; Dintzner LT; Aarnoutse EJ; Leijten FS; Hermes D; Ramsey NF
    Clin Neurophysiol; 2013 Jun; 124(6):1169-74. PubMed ID: 23340046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Characterization of the Left Ventrolateral Premotor Cortex in Humans: A Direct Electrophysiological Approach.
    Fornia L; Ferpozzi V; Montagna M; Rossi M; Riva M; Pessina F; Martinelli Boneschi F; Borroni P; Lemon RN; Bello L; Cerri G
    Cereb Cortex; 2018 Jan; 28(1):167-183. PubMed ID: 27920095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of electrocorticogram high-gamma signal in response to varying upper extremity movement velocity.
    Wang PT; McCrimmon CM; King CE; Shaw SJ; Millett DE; Gong H; Chui LA; Liu CY; Nenadic Z; Do AH
    Brain Struct Funct; 2017 Nov; 222(8):3705-3748. PubMed ID: 28523425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding fingertip trajectory from electrocorticographic signals in humans.
    Nakanishi Y; Yanagisawa T; Shin D; Chen C; Kambara H; Yoshimura N; Fukuma R; Kishima H; Hirata M; Koike Y
    Neurosci Res; 2014 Aug; 85():20-7. PubMed ID: 24880133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.