BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2836196)

  • 1. The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):645-51. PubMed ID: 2836196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):637-44. PubMed ID: 2836195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio.
    Brown GC; Brand MD
    Biochem J; 1988 Jun; 252(2):473-9. PubMed ID: 2843170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.
    Brown GC
    J Biol Chem; 1989 Sep; 264(25):14704-9. PubMed ID: 2549030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of the electron transport chain in mitochondria isolated from rats treated with mannoheptulose or glucagon.
    Brand MD; D'Alessandri L; Reis HM; Hafner RP
    Arch Biochem Biophys; 1990 Dec; 283(2):278-84. PubMed ID: 2177325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonmotive stoichiometry of rat liver cytochrome c oxidase: determination by a new rate/pulse method.
    Moody AJ; Mitchell R; West IC; Mitchell P
    Biochim Biophys Acta; 1987 Nov; 894(2):209-27. PubMed ID: 2823893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the stoichiometry and thermodynamics of proton-pumping cytochrome c oxidase in mitochondria.
    Krab K; Wikström M
    Biochim Biophys Acta; 1979 Oct; 548(1):1-15. PubMed ID: 39598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and steady-state-kinetic investigation of the effect of NN'-dicyclohexylcarbodi-imide on H+ translocation by the mitochondrial cytochrome bc1 complex.
    Brand MD; Al-Shawi MK; Brown GC; Price BD
    Biochem J; 1985 Jan; 225(2):407-11. PubMed ID: 2983671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
    Brown GC; Brand MD
    Biochem J; 1985 Jan; 225(2):399-405. PubMed ID: 2983670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytochrome chain of mitochondria exhibits variable H+/e- stoichiometry.
    Papa S; Capitanio N; Capitanio G; De Nitto E; Minuto M
    FEBS Lett; 1991 Aug; 288(1-2):183-6. PubMed ID: 1652472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoupling of the bc1 complex in S. cerevisiae; point mutations affecting the cytochrome b gene bring new information about the structural aspect of the proton translocation.
    Bruel C; Manon S; Guérin M; Lemesle-Meunier D
    J Bioenerg Biomembr; 1995 Oct; 27(5):527-39. PubMed ID: 8718457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent lateral diffusion of cytochrome bc1 complex and cytochrome oxidase in the mitochondrial inner membrane.
    Höchli M; Höchli L; Hackenbrock CR
    Eur J Cell Biol; 1985 Jul; 38(1):1-5. PubMed ID: 2992981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of the mitochondrial bc1 complex by N,N'-dicyclohexylcarbodiimide inhibits proton translocation.
    Price BD; Brand MD
    Eur J Biochem; 1983 May; 132(3):595-601. PubMed ID: 6303780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry.
    Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S
    Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining and understanding the control of flux. An illustration in submitochondrial particles of how to validate schemes of metabolic control.
    Moreno-Sánchez R; Bravo C; Westerhoff HV
    Eur J Biochem; 1999 Sep; 264(2):427-33. PubMed ID: 10491087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proton pump of cytochrome c oxidase and its stoichiometry.
    Sigel E; Carafoli E
    Eur J Biochem; 1978 Aug; 89(1):119-23. PubMed ID: 29754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria.
    Cruciat CM; Brunner S; Baumann F; Neupert W; Stuart RA
    J Biol Chem; 2000 Jun; 275(24):18093-8. PubMed ID: 10764779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control analysis of the bc1 complex of Saccharomyces cerevisiae: effect on cytochrome c oxidase, respiration and growth rate.
    Boumans H; Berden JA; Grivell LA; van Dam K
    Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):877-83. PubMed ID: 9560317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic limits to the stoichiometry of H+ pumping by mitochondrial cytochrome oxidase.
    Murphy MP; Brown GC; Brand MD
    FEBS Lett; 1985 Jul; 187(1):16-20. PubMed ID: 2991005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.