These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28361962)
1. Fractal and multifractal analyses of bipartite networks. Liu JL; Wang J; Yu ZG; Xie XH Sci Rep; 2017 Mar; 7():45588. PubMed ID: 28361962 [TBL] [Abstract][Full Text] [Related]
2. Multifractal analysis of weighted networks by a modified sandbox algorithm. Song YQ; Liu JL; Yu ZG; Li BG Sci Rep; 2015 Dec; 5():17628. PubMed ID: 26634304 [TBL] [Abstract][Full Text] [Related]
3. Latent geometry of bipartite networks. Kitsak M; Papadopoulos F; Krioukov D Phys Rev E; 2017 Mar; 95(3-1):032309. PubMed ID: 28415237 [TBL] [Abstract][Full Text] [Related]
4. Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions. Liu JL; Yu ZG; Anh V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032814. PubMed ID: 24730906 [TBL] [Abstract][Full Text] [Related]
5. Multifractality of complex networks. Furuya S; Yakubo K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036118. PubMed ID: 22060467 [TBL] [Abstract][Full Text] [Related]
6. Graph Matching between Bipartite and Unipartite Networks: to Collapse, or not to Collapse, that is the Question. Arroyo J; Priebe CE; Lyzinski V IEEE Trans Netw Sci Eng; 2021; 8(4):3019-3033. PubMed ID: 35224127 [TBL] [Abstract][Full Text] [Related]
7. Controlling the Multifractal Generating Measures of Complex Networks. Yang R; Bogdan P Sci Rep; 2020 Mar; 10(1):5541. PubMed ID: 32218468 [TBL] [Abstract][Full Text] [Related]
8. Determination of multifractal dimensions of complex networks by means of the sandbox algorithm. Liu JL; Yu ZG; Anh V Chaos; 2015 Feb; 25(2):023103. PubMed ID: 25725639 [TBL] [Abstract][Full Text] [Related]
9. Multifractality of Complex Networks Is Also Due to Geometry: A Geometric Sandbox Algorithm. Rak R; Rak E Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761623 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary method for finding communities in bipartite networks. Zhan W; Zhang Z; Guan J; Zhou S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066120. PubMed ID: 21797454 [TBL] [Abstract][Full Text] [Related]
11. Box-covering algorithm for fractal dimension of weighted networks. Wei DJ; Liu Q; Zhang HX; Hu Y; Deng Y; Mahadevan S Sci Rep; 2013 Oct; 3():3049. PubMed ID: 24157896 [TBL] [Abstract][Full Text] [Related]
12. Module identification in bipartite and directed networks. Guimerà R; Sales-Pardo M; Amaral LA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036102. PubMed ID: 17930301 [TBL] [Abstract][Full Text] [Related]
14. A potential energy and mutual information based link prediction approach for bipartite networks. Kumar P; Sharma D Sci Rep; 2020 Nov; 10(1):20659. PubMed ID: 33244025 [TBL] [Abstract][Full Text] [Related]
16. Efficiently inferring community structure in bipartite networks. Larremore DB; Clauset A; Jacobs AZ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012805. PubMed ID: 25122340 [TBL] [Abstract][Full Text] [Related]
17. Graph fractal dimension and the structure of fractal networks. Skums P; Bunimovich L J Complex Netw; 2020 Aug; 8(4):cnaa037. PubMed ID: 33251012 [TBL] [Abstract][Full Text] [Related]
18. Comment on "Evolutionary method for finding communities in bipartite networks". Costa A; Hansen P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):058101. PubMed ID: 22181549 [TBL] [Abstract][Full Text] [Related]
19. An Extended Correlation Dimension of Complex Networks. Zhang S; Lan W; Dai W; Wu F; Chen C Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34205073 [TBL] [Abstract][Full Text] [Related]
20. Efficient Detection of Communities in Biological Bipartite Networks. Pesantez-Cabrera P; Kalyanaraman A IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):258-271. PubMed ID: 29990252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]