BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28362087)

  • 1. Elucidating the Structures of the Low- and High-pH Mo(V) Species in Respiratory Nitrate Reductase: A Combined EPR,
    Rendon J; Biaso F; Ceccaldi P; Toci R; Seduk F; Magalon A; Guigliarelli B; Grimaldi S
    Inorg Chem; 2017 Apr; 56(8):4423-4435. PubMed ID: 28362087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy.
    Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ
    Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha.
    Bennett B; Berks BC; Ferguson SJ; Thomson AJ; Richardson DJ
    Eur J Biochem; 1994 Dec; 226(3):789-98. PubMed ID: 7813468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray-absorption and electron-paramagnetic-resonance spectroscopic studies of the environment of molybdenum in high-pH and low-pH forms of Escherichia coli nitrate reductase.
    George GN; Turner NA; Bray RC; Morpeth FF; Boxer DH; Cramer SP
    Biochem J; 1989 May; 259(3):693-700. PubMed ID: 2543368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT investigation of the molybdenum cofactor in periplasmic nitrate reductases: structure of the Mo(V) EPR-active species.
    Biaso F; Burlat B; Guigliarelli B
    Inorg Chem; 2012 Mar; 51(6):3409-19. PubMed ID: 22397692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus.
    Butler CS; Charnock JM; Garner CD; Thomson AJ; Ferguson SJ; Berks BC; Richardson DJ
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):859-64. PubMed ID: 11104696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation-reduction midpoint potentials of the molybdenum center in spinach NADH:nitrate reductase.
    Barber MJ; Notton BA; Solomonson LP
    FEBS Lett; 1987 Mar; 213(2):372-4. PubMed ID: 3030817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy.
    Butler CS; Fairhurst SA; Ferguson SJ; Thomson AJ; Berks BC; Richardson DJ; Lowe DJ
    Biochem J; 2002 May; 363(Pt 3):817-23. PubMed ID: 11964184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family.
    Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C
    J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved his-50 residue in the NarG subunit.
    Magalon A; Asso M; Guigliarelli B; Rothery RA; Bertrand P; Giordano G; Blasco F
    Biochemistry; 1998 May; 37(20):7363-70. PubMed ID: 9585550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog.
    Pollock VV; Conover RC; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Jul; 403(2):237-48. PubMed ID: 12139973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation-reduction potentials of flavin and Mo-pterin centers in assimilatory nitrate reductase: variation with pH.
    Kay CJ; Solomonson LP; Barber MJ
    Biochemistry; 1990 Dec; 29(48):10823-8. PubMed ID: 2176886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrite and nitrate reduction by molybdenum centers of the nitrate reductase type: computational predictions on the catalytic mechanism.
    Silaghi-Dumitrescu R; Mich M; Matyas C; Cooper CE
    Nitric Oxide; 2012 Jan; 26(1):27-31. PubMed ID: 22138423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods.
    Dias JM; Than ME; Humm A; Huber R; Bourenkov GP; Bartunik HD; Bursakov S; Calvete J; Caldeira J; Carneiro C; Moura JJ; Moura I; Romão MJ
    Structure; 1999 Jan; 7(1):65-79. PubMed ID: 10368307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the g-tensors and their orientations for cis,trans-(L-N2S2)Mo(V)OX (X = Cl, SCH2Ph) by single-crystal EPR spectroscopy and molecular orbital calculations.
    Cosper MM; Neese F; Astashkin AV; Carducci MD; Raitsimring AM; Enemark JH
    Inorg Chem; 2005 Mar; 44(5):1290-301. PubMed ID: 15732969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntheses, spectroscopy, and redox chemistry of encapsulated oxo-Mo(V) centers: implications for pyranopterin-containing molybdoenzymes.
    Basu P; Nemykin VN; Sengar RS
    Inorg Chem; 2003 Nov; 42(23):7489-501. PubMed ID: 14606844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774.
    González PJ; Rivas MG; Brondino CD; Bursakov SA; Moura I; Moura JJ
    J Biol Inorg Chem; 2006 Jul; 11(5):609-16. PubMed ID: 16791644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to a high-tungsten environment: Pyrobaculum aerophilum contains an active tungsten nitrate reductase.
    de Vries S; Momcilovic M; Strampraad MJ; Whitelegge JP; Baghai A; Schröder I
    Biochemistry; 2010 Nov; 49(45):9911-21. PubMed ID: 20863064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum.
    Najmudin S; González PJ; Trincão J; Coelho C; Mukhopadhyay A; Cerqueira NM; Romão CC; Moura I; Moura JJ; Brondino CD; Romão MJ
    J Biol Inorg Chem; 2008 Jun; 13(5):737-53. PubMed ID: 18327621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.
    Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ
    J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.