These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 28362096)

  • 1. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable Dry-Pressed Electrodes Based on Holey Graphene.
    Lin Y; Plaza-Rivera CO; Hu L; Connell JW
    Acc Chem Res; 2022 Oct; 55(20):3020-3031. PubMed ID: 36173244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dry-Processed, Binder-Free Holey Graphene Electrodes for Supercapacitors with Ultrahigh Areal Loadings.
    Walsh ED; Han X; Lacey SD; Kim JW; Connell JW; Hu L; Lin Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29478-29485. PubMed ID: 27718542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holey Graphene/Ferroelectric/Sulfur Composite Cathodes for High-Capacity Lithium-Sulfur Batteries.
    Zuluaga-Gómez CC; Plaza-Rivera CO; Tripathi B; Katiyar RK; Pradhan DK; Morell G; Lin Y; Correa M; Katiyar RS
    ACS Omega; 2023 Apr; 8(14):13097-13108. PubMed ID: 37065024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries.
    Sun B; Huang X; Chen S; Munroe P; Wang G
    Nano Lett; 2014 Jun; 14(6):3145-52. PubMed ID: 24854426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximal Utilization of a High-Loading Cathode in Li-O
    Park SH; Cheon YJ; Lee YJ; Shin KH; Hwang YY; Jeong YS; Lee YJ
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30872-30879. PubMed ID: 31380617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage.
    Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y
    ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viable Synthesis of Porous MnCo
    Karkera G; Chandrappa SG; Prakash AS
    Chemistry; 2018 Nov; 24(65):17303-17310. PubMed ID: 30176089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Rechargeable Lithium-CO
    Qie L; Lin Y; Connell JW; Xu J; Dai L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6970-6974. PubMed ID: 28510337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity.
    Zhong J; Wang T; Wang L; Peng L; Fu S; Zhang M; Cao J; Xu X; Liang J; Fei H; Duan X; Lu B; Wang Y; Zhu J; Duan X
    Nanomicro Lett; 2022 Jan; 14(1):50. PubMed ID: 35076763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically Designed 3D Holey C
    Shinde SS; Lee CH; Yu JY; Kim DH; Lee SU; Lee JH
    ACS Nano; 2018 Jan; 12(1):596-608. PubMed ID: 29262251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D Nitrogen-Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium-Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity.
    Li Z; He Q; Xu X; Zhao Y; Liu X; Zhou C; Ai D; Xia L; Mai L
    Adv Mater; 2018 Nov; 30(45):e1804089. PubMed ID: 30259567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.
    Song J; Yu Z; Gordin ML; Wang D
    Nano Lett; 2016 Feb; 16(2):864-70. PubMed ID: 26709841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional Hybrid Catalysts with Perovskite LaCo
    Kim JG; Kim Y; Noh Y; Lee S; Kim Y; Kim WB
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5429-5439. PubMed ID: 29345459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binder-free Cu-supported Ag nanowires for aqueous rechargeable silver-zinc batteries with ultrahigh areal capacity.
    Zhang Y; Li X; Cheng Y; Tan W; Huang X
    J Colloid Interface Sci; 2021 Mar; 586():47-55. PubMed ID: 33162035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Loading Lithium-Sulfur Batteries with Solvent-Free Dry-Electrode Processing.
    Sul H; Lee D; Manthiram A
    Small; 2024 Aug; 20(31):e2400728. PubMed ID: 38433393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure.
    Fang R; Zhao S; Pei S; Qian X; Hou PX; Cheng HM; Liu C; Li F
    ACS Nano; 2016 Sep; 10(9):8676-82. PubMed ID: 27537348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.