These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28362392)

  • 1. Fabrication of Nanopillar-Based Split Ring Resonators for Displacement Current Mediated Resonances in Terahertz Metamaterials.
    Liu C; Schauff J; Lee S; Cho JH
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application.
    Lai WH; Li B; Fu SH; Lin YS
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of Permittivity of Dielectric Analytes in the Terahertz Frequency Range Using Split Ring Resonator Elements Integrated with On-Chip Waveguide.
    Park SJ; Cunningham J
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs).
    Lahiri B; Dylewicz R; De La Rue RM; Johnson NP
    Opt Express; 2010 May; 18(11):11202-8. PubMed ID: 20588979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Layer Inkjet-Printed Microwave Split-Ring Resonators for Detecting Analyte Binding to the Gold Surface.
    Paul M; Kühnel H; Oberpertinger R; Mehofer C; Pollhammer D; Wellenzohn M
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of terahertz metamaterials by laser printing.
    Kim H; Melinger JS; Khachatrian A; Charipar NA; Auyeung RC; Piqué A
    Opt Lett; 2010 Dec; 35(23):4039-41. PubMed ID: 21124605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.
    Nouman MT; Kim HW; Woo JM; Hwang JH; Kim D; Jang JH
    Sci Rep; 2016 May; 6():26452. PubMed ID: 27194128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs.
    Fan K; Hwang HY; Liu M; Strikwerda AC; Sternbach A; Zhang J; Zhao X; Zhang X; Nelson KA; Averitt RD
    Phys Rev Lett; 2013 May; 110(21):217404. PubMed ID: 23745933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely high Q-factor terahertz metasurface using reconstructive coherent mode resonance.
    Yan F; Li Q; Wang Z; Tian H; Li L
    Opt Express; 2021 Mar; 29(5):7015-7023. PubMed ID: 33726211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of swelling of a photoresist on electromagnetic resonance of terahertz metamaterials.
    Chiang WF; Hsieh YT; Wang SH; Miao HY; Liu JH; Huang CY
    Opt Lett; 2016 Jun; 41(12):2879-82. PubMed ID: 27304312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling between nanoscale metamaterials and phonons.
    Shelton DJ; Brener I; Ginn JC; Sinclair MB; Peters DW; Coffey KR; Boreman GD
    Nano Lett; 2011 May; 11(5):2104-8. PubMed ID: 21462937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stand-up magnetic metamaterials at terahertz frequencies.
    Fan K; Strikwerda AC; Tao H; Zhang X; Averitt RD
    Opt Express; 2011 Jun; 19(13):12619-27. PubMed ID: 21716502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors.
    Islam M; Rao SJM; Kumar G; Pal BP; Roy Chowdhury D
    Sci Rep; 2017 Aug; 7(1):7355. PubMed ID: 28779176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharp Fano resonances in THz metamaterials.
    Singh R; Al-Naib IA; Koch M; Zhang W
    Opt Express; 2011 Mar; 19(7):6312-9. PubMed ID: 21451657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-diffraction thin-film sensing with planar terahertz metamaterials.
    Withayachumnankul W; Lin H; Serita K; Shah CM; Sriram S; Bhaskaran M; Tonouchi M; Fumeaux C; Abbott D
    Opt Express; 2012 Jan; 20(3):3345-52. PubMed ID: 22330572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of THz frequency using PANDA ring resonator for THz imaging.
    Jalil MA; Abdolkarim A; Saktioto T; Ong CT; Yupapin PP
    Int J Nanomedicine; 2012; 7():773-9. PubMed ID: 22359455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically thin terahertz metamaterials.
    Singh R; Smirnova E; Taylor AJ; O'Hara JF; Zhang W
    Opt Express; 2008 Apr; 16(9):6537-43. PubMed ID: 18545357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.