These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28362777)

  • 21. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser.
    Kalantarifard F; Elahi P; Makey G; Maragò OM; Ilday FÖ; Volpe G
    Nat Commun; 2019 Jun; 10(1):2683. PubMed ID: 31213600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bessel beam optical tweezers for manipulating superparamagnetic beads.
    Andrade UMS; Garcia AM; Rocha MS
    Appl Opt; 2021 Apr; 60(12):3422-3429. PubMed ID: 33983247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Paták A; Pokorná Z; Mika F; Zemánek P
    Sci Rep; 2015 Jan; 5():8106. PubMed ID: 25630432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
    Bowman R; Gibson G; Padgett M
    Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study.
    Trojek J; Chvátal L; Zemánek P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1224-36. PubMed ID: 22751387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trapping metallic particles using focused Bloch surface waves.
    Xiang Y; Tang X; Fu Y; Lu F; Kuai Y; Min C; Chen J; Wang P; Lakowicz JR; Yuan X; Zhang D
    Nanoscale; 2020 Jan; 12(3):1688-1696. PubMed ID: 31894803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two particle tracking and detection in a single Gaussian beam optical trap.
    Praveen P; Yogesha ; Iyengar SS; Bhattacharya S; Ananthamurthy S
    Appl Opt; 2016 Jan; 55(3):585-94. PubMed ID: 26835934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing conical refraction optical tweezers.
    McDonald C; McDougall C; Rafailov E; McGloin D
    Opt Lett; 2014 Dec; 39(23):6691-4. PubMed ID: 25490654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical trap stiffness in the presence and absence of spherical aberrations.
    Vermeulen KC; Wuite GJ; Stienen GJ; Schmidt CF
    Appl Opt; 2006 Mar; 45(8):1812-9. PubMed ID: 16572698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam.
    Kawauchi H; Yonezawa K; Kozawa Y; Sato S
    Opt Lett; 2007 Jul; 32(13):1839-41. PubMed ID: 17603587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.
    Wang LG; Chai HS
    Opt Express; 2011 Jul; 19(15):14389-402. PubMed ID: 21934801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
    Chang CB; Huang WX; Lee KH; Sung HJ
    Opt Express; 2012 Oct; 20(21):24068-84. PubMed ID: 23188374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of trapping efficiency by utilizing a hollow sinh-Gaussian beam.
    Liu Z; Wang X; Hang K
    Sci Rep; 2019 Jul; 9(1):10187. PubMed ID: 31308461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap.
    Ayala YA; Arzola AV; Volke-Sepúlveda K
    Opt Lett; 2016 Feb; 41(3):614-7. PubMed ID: 26907437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.
    Price CJ; Donnelly TD; Giltrap S; Stuart NH; Parker S; Patankar S; Lowe HF; Drew D; Gumbrell ET; Smith RA
    Rev Sci Instrum; 2015 Mar; 86(3):033502. PubMed ID: 25832224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow.
    Merenda F; Boer G; Rohner J; Delacrétaz G; Salathé RP
    Opt Express; 2006 Feb; 14(4):1685-99. PubMed ID: 19503495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.