These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28362785)

  • 1. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions.
    Liu L; Mandelis A; Huan H; Michaelian KH
    Opt Lett; 2017 Apr; 42(7):1424-1427. PubMed ID: 28362785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive broadband differential infrared photoacoustic spectroscopy with wavelet denoising algorithm for trace gas detection.
    Liu L; Huan H; Li W; Mandelis A; Wang Y; Zhang L; Zhang X; Yin X; Wu Y; Shao X
    Photoacoustics; 2021 Mar; 21():100228. PubMed ID: 33365230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared dual-gas CH
    Ye W; Xia Z; Hu L; Luo W; Liu W; Xu X; Zheng C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121908. PubMed ID: 36174401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential photoacoustic spectroscopy for flow gas detection based on single microphone.
    Fu L; Zhang J; Pan Y; Lu P
    Photoacoustics; 2024 Aug; 38():100624. PubMed ID: 38872921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the soil mid-infrared photoacoustic spectroscopy].
    Du CW; Zhou JM; Wang HY; Zhang JB; Zhu AN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1242-5. PubMed ID: 18800696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic Detection of Weak Absorption Bands in Infrared Spectra of Calcite.
    Campbell S; Dusseault M; Xu B; Michaelian KH; Poduska KM
    Appl Spectrosc; 2021 Jul; 75(7):795-801. PubMed ID: 33783238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Evaluation of Broadband Photoacoustic Spectroscopy in the Infrared with an Optical Parametric Oscillator.
    Bruhns H; Wolff M; Saalberg Y; Spohr KM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive multi-species photoacoustic gas detection based on mid-infrared supercontinuum source and miniature multipass cell.
    Mikkonen T; Hieta T; Genty G; Toivonen J
    Phys Chem Chem Phys; 2022 Aug; 24(32):19481-19487. PubMed ID: 35929451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity.
    Zhang C; Qiao S; Ma Y
    Photoacoustics; 2023 Apr; 30():100467. PubMed ID: 36874591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Pulse Radiolysis with Nanosecond Time-Resolved Step-Scan Fourier Transform Infrared Spectroscopy: Broadband Mid-Infrared Detection of Radiolytically Generated Transients.
    Grills DC; Layne BH; Wishart JF
    Appl Spectrosc; 2022 Sep; 76(9):1142-1153. PubMed ID: 35414202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser.
    Ma Y; Qiao S; He Y; Li Y; Zhang Z; Yu X; Tittel FK
    Opt Express; 2019 May; 27(10):14163-14172. PubMed ID: 31163869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercontinuum intensity noise coupling in Fourier transform photoacoustic spectroscopy.
    Mikkonen T; Eslami Z; Genty G; Toivonen J
    Opt Lett; 2022 Apr; 47(7):1713-1716. PubMed ID: 35363715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical frequency comb photoacoustic spectroscopy.
    Sadiek I; Mikkonen T; Vainio M; Toivonen J; Foltynowicz A
    Phys Chem Chem Phys; 2018 Nov; 20(44):27849-27855. PubMed ID: 30398249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of protein biomass by Fourier transform infrared-photoacoustic spectroscopy.
    Gordon SH; Greene RV; Freer SN; James C
    Biotechnol Appl Biochem; 1990 Feb; 12(1):1-10. PubMed ID: 2178631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.
    Wang Q; Wang Z; Chang J; Ren W
    Opt Lett; 2017 Jun; 42(11):2114-2117. PubMed ID: 28569859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared photoacoustic multicomponent gas spectroscopy with optical cantilever detection.
    Hirschmann CB; Uotila J; Ojala S; Tenhunen J; Keiski RL
    Appl Spectrosc; 2010 Mar; 64(3):293-7. PubMed ID: 20223064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking.
    Wang Z; Wang Q; Zhang W; Wei H; Li Y; Ren W
    Opt Lett; 2019 Apr; 44(8):1924-1927. PubMed ID: 30985776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic spectroscopy for process analysis.
    Schmid T
    Anal Bioanal Chem; 2006 Mar; 384(5):1071-86. PubMed ID: 15940449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace Gas Detection System Based on All-Optical Quartz-Enhanced Photoacoustic Spectroscopy.
    Lin C; Liao Y; Fang F
    Appl Spectrosc; 2019 Nov; 73(11):1327-1333. PubMed ID: 31373509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug penetration as studied by noninvasive methods: fourier transform infrared-attenuated total reflection, fourier transform infrared, and ultraviolet photoacoustic spectroscopy.
    Hanh BD; Neubert RH; Wartewig S; Christ A; Hentzsch C
    J Pharm Sci; 2000 Sep; 89(9):1106-13. PubMed ID: 10944375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.