BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 28362790)

  • 1. 2  MHz multi-wavelength pulsed laser for functional photoacoustic microscopy.
    Liang Y; Jin L; Guan BO; Wang L
    Opt Lett; 2017 Apr; 42(7):1452-1455. PubMed ID: 28362790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation.
    Zhou Y; Liang S; Li M; Liu C; Lai P; Wang L
    J Biophotonics; 2020 Jun; 13(6):e201960229. PubMed ID: 32049415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quickly Alternating Green and Red Laser Source for Real-time Multispectral Photoacoustic Microscopy.
    Park SM; Kim DY; Cho SW; Kim BM; Lee TG; Kim CS; Lee SW
    Photoacoustics; 2020 Dec; 20():100204. PubMed ID: 33014706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time functional optical-resolution photoacoustic microscopy using high-speed alternating illumination at 532 and 1064 nm.
    Kang H; Lee SW; Park SM; Cho SW; Lee JY; Kim CS; Lee TG
    J Biophotonics; 2018 Mar; 11(3):. PubMed ID: 28945324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration.
    Hajireza P; Forbrich A; Zemp RJ
    Opt Lett; 2013 Aug; 38(15):2711-3. PubMed ID: 23903119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.
    Hajireza P; Forbrich A; Zemp R
    Biomed Opt Express; 2014 Feb; 5(2):539-46. PubMed ID: 24575346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source.
    Zhang X; Zhang HF; Jiao S
    J Biomed Opt; 2012 Mar; 17(3):030502. PubMed ID: 22502553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal and spectral unmixing of photoacoustic signals by deep learning.
    Zhou Y; Zhong F; Hu S
    Opt Lett; 2021 Jun; 46(11):2690-2693. PubMed ID: 34061089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost Multi-Wavelength Photoacoustic Imaging Based on Portable Continuous-Wave Laser Diode Module.
    Zhong H; Jiang D; Lan H; Duan T; Gao F; Gao F
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):738-745. PubMed ID: 32746335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrally encoded photoacoustic microscopy using a digital mirror device.
    Wang Y; Maslov K; Wang LV
    J Biomed Opt; 2012 Jun; 17(6):066020. PubMed ID: 22734776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman-shifted wavelength-selectable pulsed fiber laser with high repetition rate and high pulse energy in the visible.
    Xu L; Alam S; Kang Q; Shepherd DP; Richardson DJ
    Opt Express; 2017 Jan; 25(1):351-356. PubMed ID: 28085829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy.
    Aytac-Kipergil E; Demirkiran A; Uluc N; Yavas S; Kayikcioglu T; Salman S; Karamuk SG; Ilday FO; Unlu MB
    Sci Rep; 2016 Dec; 6():38674. PubMed ID: 27929049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo structural and functional imaging of human nailbed microvasculature using photoacoustic microscopy.
    Li D; Yao Y; Zuo T; Xu J; Tao C; Qian X; Liu X
    Opt Lett; 2023 Nov; 48(21):5711-5714. PubMed ID: 37910740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber laser technologies for photoacoustic microscopy.
    Jin L; Liang Y
    Vis Comput Ind Biomed Art; 2021 Apr; 4(1):11. PubMed ID: 33928461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid multi-wavelength photoacoustic imaging.
    Duan T; Lan H; Zhong H; Zhou M; Zhang R; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4804-4807. PubMed ID: 30441421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source.
    Lee C; Jeon M; Jeon MY; Kim J; Kim C
    Appl Opt; 2014 Jun; 53(18):3884-9. PubMed ID: 24979418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source.
    Billeh YN; Liu M; Buma T
    Opt Express; 2010 Aug; 18(18):18519-24. PubMed ID: 20940743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation.
    Zeng L; Piao Z; Huang S; Jia W; Chen Z
    Opt Express; 2015 Nov; 23(24):31026-33. PubMed ID: 26698732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustic thermal flowmetry with a single light source.
    Liu W; Lan B; Hu L; Chen R; Zhou Q; Yao J
    J Biomed Opt; 2017 Sep; 22(9):1-6. PubMed ID: 28875623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study.
    Jiang Y; Forbrich A; Harrison T; Zemp RJ
    J Biomed Opt; 2012 Mar; 17(3):036012. PubMed ID: 22502570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.