These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28362792)

  • 1. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer.
    Podmore H; Scott A; Cheben P; Velasco AV; Schmid JH; Vachon M; Lee R
    Opt Lett; 2017 Apr; 42(7):1440-1443. PubMed ID: 28362792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip interrogator based on Fourier transform spectroscopy.
    Peternella FG; Esselink T; Dorsman B; Harmsma P; Horsten RC; Zuidwijk T; Urbach HP; Adam ALC
    Opt Express; 2019 May; 27(11):15456-15473. PubMed ID: 31163742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution on-chip spatial heterodyne Fourier transform spectrometer based on artificial neural network and PCSBL reconstruction algorithm.
    Long X; Huang Z; Tian Y; Du J; Liu Y
    Opt Express; 2023 Sep; 31(20):33608-33621. PubMed ID: 37859138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip polarization-insensitive Fourier transform spectrometer.
    Wang H; Li Q; Shi W
    Opt Lett; 2020 Mar; 45(6):1479-1482. PubMed ID: 32163996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides.
    Velasco AV; Cheben P; Bock PJ; Delâge A; Schmid JH; Lapointe J; Janz S; Calvo ML; Xu DX; Florjańczyk M; Vachon M
    Opt Lett; 2013 Mar; 38(5):706-8. PubMed ID: 23455272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Polarization Bandwidth-Bridged Bandpass Sampling Fourier Transform Spectrometer from Visible to Near-Infrared on a Silicon Nitride Platform.
    Yoo KM; Chen RT
    ACS Photonics; 2022 Aug; 9(8):2691-2701. PubMed ID: 35996368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers.
    Florjańczyk M; Cheben P; Janz S; Scott A; Solheim B; Xu DX
    Opt Express; 2007 Dec; 15(26):18176-89. PubMed ID: 19551116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier-transform, integrated-optic spatial heterodyne spectrometer on a silica-based planar waveguide with 1 GHz resolution.
    Fontaine NK; Okamoto K; Su T; Yoo SJ
    Opt Lett; 2011 Aug; 36(16):3124-6. PubMed ID: 21847181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-high resolution and broadband chip-scale speckle enhanced Fourier-transform spectrometer.
    Paudel U; Rose T
    Opt Express; 2020 May; 28(11):16469-16485. PubMed ID: 32549469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.
    Li J; Lu DF; Qi ZM
    Appl Spectrosc; 2015 Sep; 69(9):1112-7. PubMed ID: 26414526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution.
    Zheng SN; Zou J; Cai H; Song JF; Chin LK; Liu PY; Lin ZP; Kwong DL; Liu AQ
    Nat Commun; 2019 May; 10(1):2349. PubMed ID: 31138800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Tunable MZIs Stationary-Wave Integrated Fourier Transform Spectrum Detection.
    Chen X; Huang P; Wang N; Zhu Y; Zhang J
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input.
    González-Andrade D; Dinh TTD; Guerber S; Vulliet N; Cremer S; Monfray S; Cassan E; Marris-Morini D; Boeuf F; Cheben P; Vivien L; Velasco AV; Alonso-Ramos C
    Opt Lett; 2021 Aug; 46(16):4021-4024. PubMed ID: 34388801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution on-chip Fourier transform spectrometer based on cascaded optical switches.
    Du J; Zhang H; Wang X; Xu W; Lu L; Chen J; Zhou L
    Opt Lett; 2022 Jan; 47(2):218-221. PubMed ID: 35030571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage.
    Dinh TTD; González-Andrade D; Montesinos-Ballester M; Deniel L; Szelag B; Le Roux X; Cassan E; Marris-Morini D; Vivien L; Cheben P; Velasco AV; Alonso-Ramos C
    Opt Lett; 2021 Mar; 46(6):1341-1344. PubMed ID: 33720182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers.
    Herrero-Bermello A; Velasco AV; Podmore H; Cheben P; Schmid JH; Janz S; Calvo ML; Xu DX; Scott A; Corredera P
    Opt Lett; 2017 Jun; 42(11):2239-2242. PubMed ID: 28569891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lippmann waveguide spectrometer with enhanced throughput and bandwidth for space and commercial applications.
    Madi M; Ceyssens F; Shorubalko I; Herzig HP; Guldimann B; Giaccari P
    Opt Express; 2018 Feb; 26(3):2682-2707. PubMed ID: 29401806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a silica-based complex Fourier-transform integrated-optic spatial heterodyne spectrometer incorporating 120° optical hybrid couplers.
    Uda R; Yamaguchi K; Takada K; Okamoto K
    Appl Opt; 2018 May; 57(14):3781-3787. PubMed ID: 29791341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction for phase-shift deviation in a complex Fourier-transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme.
    Takada K; Aoyagi H; Okamoto K
    Opt Lett; 2011 Apr; 36(7):1044-6. PubMed ID: 21478977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer.
    Sieger M; Balluff F; Wang X; Kim SS; Leidner L; Gauglitz G; Mizaikoff B
    Anal Chem; 2013 Mar; 85(6):3050-2. PubMed ID: 23131036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.