These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 28362803)
41. Characterization of AluI repeats of zebrafish (Brachydanio rerio). He L; Zhu Z; Faras AJ; Guise KS; Hackett PB; Kapuscinski AR Mol Mar Biol Biotechnol; 1992 Apr; 1(2):125-35. PubMed ID: 1308809 [TBL] [Abstract][Full Text] [Related]
42. When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping. Sailer S; Coassin S; Lackner K; Fischer C; McNeill E; Streiter G; Kremser C; Maglione M; Green CM; Moralli D; Moschen AR; Keller MA; Golderer G; Werner-Felmayer G; Tegeder I; Channon KM; Davies B; Werner ER; Watschinger K Cell Biosci; 2021 Mar; 11(1):54. PubMed ID: 33726865 [TBL] [Abstract][Full Text] [Related]
43. GetPrimers: A generalized PCR-based genetic targeting primer designer enabling easy and standardized targeted gene modification across multiple systems. Miao Z; Wang H; Tu X; Huang Z; Huang S; Zhang X; Wang F; Huang Z; Li H; Jiao Y; Gao S; Zhou Z; Shan CM; Li J; Yue JX Yeast; 2024 Jan; 41(1-2):19-34. PubMed ID: 38041528 [TBL] [Abstract][Full Text] [Related]
44. AAV6 Is Superior to Clade F AAVs in Stimulating Homologous Recombination-Based Genome Editing in Human HSPCs. Dudek AM; Porteus MH Mol Ther; 2019 Oct; 27(10):1701-1705. PubMed ID: 31537456 [No Abstract] [Full Text] [Related]
45. Gene Editing with Helper-Dependent Adenovirus Can Efficiently Introduce Multiple Changes Simultaneously over a Large Genomic Region. Palmer DJ; Grove NC; Turner DL; Ng P Mol Ther Nucleic Acids; 2017 Sep; 8():101-110. PubMed ID: 28918012 [TBL] [Abstract][Full Text] [Related]
46. Correction for Smith et al., Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proc Natl Acad Sci U S A; 2019 Jan; 116(1):337. PubMed ID: 30584108 [No Abstract] [Full Text] [Related]
47. A simple and efficient method for CRISPR/Cas9-induced mutant screening. Hua Y; Wang C; Huang J; Wang K J Genet Genomics; 2017 Apr; 44(4):207-213. PubMed ID: 28416245 [TBL] [Abstract][Full Text] [Related]
48. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Chen F; Ding X; Feng Y; Seebeck T; Jiang Y; Davis GD Nat Commun; 2017 Apr; 8():14958. PubMed ID: 28387220 [TBL] [Abstract][Full Text] [Related]
49. A novel perivascular cell population in the zebrafish brain. Venero Galanternik M; Castranova D; Gore AV; Blewett NH; Jung HM; Stratman AN; Kirby MR; Iben J; Miller MF; Kawakami K; Maraia RJ; Weinstein BM Elife; 2017 Apr; 6():. PubMed ID: 28395729 [TBL] [Abstract][Full Text] [Related]
51. Temperature effect on CRISPR-Cas9 mediated genome editing. Xiang G; Zhang X; An C; Cheng C; Wang H J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228 [TBL] [Abstract][Full Text] [Related]
52. Correction: Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes. Place ES; Smith JC PLoS One; 2017; 12(4):e0175608. PubMed ID: 28384291 [TBL] [Abstract][Full Text] [Related]
53. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. Joseph SR; Pálfy M; Hilbert L; Kumar M; Karschau J; Zaburdaev V; Shevchenko A; Vastenhouw NL Elife; 2017 Apr; 6():. PubMed ID: 28425915 [TBL] [Abstract][Full Text] [Related]
54. CRISPR-Cas9 Structures and Mechanisms. Jiang F; Doudna JA Annu Rev Biophys; 2017 May; 46():505-529. PubMed ID: 28375731 [TBL] [Abstract][Full Text] [Related]
55. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345 [TBL] [Abstract][Full Text] [Related]
56. Spatial Allocation and Specification of Cardiomyocytes during Zebrafish Embryogenesis. Fukui H; Chiba A; Miyazaki T; Takano H; Ishikawa H; Omori T; Mochiuzki N Korean Circ J; 2017 Mar; 47(2):160-167. PubMed ID: 28382067 [TBL] [Abstract][Full Text] [Related]
57. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033 [TBL] [Abstract][Full Text] [Related]
58. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse. Chen J; Du Y; He X; Huang X; Shi YS Sci Rep; 2017 Mar; 7(1):517. PubMed ID: 28364122 [TBL] [Abstract][Full Text] [Related]
59. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens. Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596 [TBL] [Abstract][Full Text] [Related]
60. Marker-free coselection for CRISPR-driven genome editing in human cells. Agudelo D; Duringer A; Bozoyan L; Huard CC; Carter S; Loehr J; Synodinou D; Drouin M; Salsman J; Dellaire G; Laganière J; Doyon Y Nat Methods; 2017 Jun; 14(6):615-620. PubMed ID: 28417998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]