These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 28363121)
1. Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20GHz. Sorokin BP; Kvashnin GM; Novoselov AS; Bormashov VS; Golovanov AV; Burkov SI; Blank VD Ultrasonics; 2017 Jul; 78():162-165. PubMed ID: 28363121 [TBL] [Abstract][Full Text] [Related]
2. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. I. Waveguide criterion. Kvashnin GM; Sorokin BP; Novoselov AS Ultrasonics; 2018 Mar; 84():101-106. PubMed ID: 29100143 [TBL] [Abstract][Full Text] [Related]
3. Microwave Diamond-Based HBAR as a Highly Sensitive Sensor for Multiple Applications: Acoustic Attenuation in the Mo Film. Sorokin B; Asafiev N; Yashin D; Luparev N; Golovanov A; Kravchuk K Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177705 [TBL] [Abstract][Full Text] [Related]
4. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. II. Lateral energy flow. Kvashnin GM; Sorokin BP Ultrasonics; 2021 Mar; 111():106311. PubMed ID: 33264740 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the metal layer thickness influence on the dispersion characteristics of acoustic waves propagating in the layered piezoelectric structure "Me/AlN/Me/diamond". Burkov SI; Zolotova OP; Sorokin BP Ultrasonics; 2018 Feb; 83():188-193. PubMed ID: 28438313 [TBL] [Abstract][Full Text] [Related]
7. Electric Field Stiffening Effect in c-Oriented Aluminum Nitride Piezoelectric Thin Films. Chen C; Shang Z; Gong J; Zhang F; Zhou H; Tang B; Xu Y; Zhang C; Yang Y; Mu X ACS Appl Mater Interfaces; 2018 Jan; 10(2):1819-1827. PubMed ID: 29260854 [TBL] [Abstract][Full Text] [Related]
9. Extracting the electromechanical coupling constant of piezoelectric thin film by the high-tone bulk acoustic resonator technique. Zhou C; Pang W; Li Q; Yu H; Hu X; Zhang H IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):958-62. PubMed ID: 22622980 [TBL] [Abstract][Full Text] [Related]
11. High-frequency SAW filters based on diamond films. Fujii S; Jian C IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2758-64. PubMed ID: 23221225 [TBL] [Abstract][Full Text] [Related]
12. Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate. Panda P; Chatterjee S; Tallur S; Laha A Sci Rep; 2023 Aug; 13(1):13329. PubMed ID: 37587141 [TBL] [Abstract][Full Text] [Related]
13. Theoretical investigation of surface acoustic wave in the new, three-layered structure: ZnO/AlN/diamond. El Hakiki M; Elmazria O; Alnot P IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):676-81. PubMed ID: 17375837 [TBL] [Abstract][Full Text] [Related]
14. Combination of e-beam lithography and of high velocity AIN/diamond-layered structure for SAW filters in X band. Kirsch P; Assouar MB; Elmazria O; Hakiki ME; Mortet V; Alnot P IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1486-91. PubMed ID: 17718340 [TBL] [Abstract][Full Text] [Related]
15. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications. Fujii S; Odawara T; Yamada H; Omori T; Hashimoto KY; Torii H; Umezawa H; Shikata S IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):986-92. PubMed ID: 23661133 [TBL] [Abstract][Full Text] [Related]
16. Features of acoustic wave propagation in the Me/ZnO/Me/diamond waveguide structure. Burkov SI; Zolotova OP; Sorokin BP; Turchin PP; Talismanov VS J Acoust Soc Am; 2018 Jan; 143(1):16. PubMed ID: 29390782 [TBL] [Abstract][Full Text] [Related]
17. Influence of crystal quality on the excitation and propagation of surface and bulk acoustic waves in polycrystalline AlN films. Clement M; Olivares J; Capilla J; Sangrador J; Iborra E IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):128-34. PubMed ID: 22293743 [TBL] [Abstract][Full Text] [Related]
18. Microwave Acoustic Attenuation in CTGS Single Crystals. Sotnikov AV; Sorokin BP; Asafiev NO; Shcherbakov DA; Kvashnin GM; Suhak Y; Fritze H; Weihnacht M; Schmidt H IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3423-3429. PubMed ID: 34181539 [TBL] [Abstract][Full Text] [Related]
19. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator. Li J; Liu M; Wang C Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404332 [TBL] [Abstract][Full Text] [Related]
20. Influence of electrodes on the effective electromechanical coupling coefficient distributions of high-overtone bulk acoustic resonator. Liu M; Li J; Wang C; Li J; Ma J Ultrasonics; 2015 Feb; 56():566-74. PubMed ID: 25459064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]