These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28363306)

  • 21. Real-time protein NMR spectroscopy and investigation of assisted protein folding.
    Kumar A; Balbach J
    Biochim Biophys Acta; 2015 Oct; 1850(10):1965-72. PubMed ID: 25497212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell.
    Charlier C; Alderson TR; Courtney JM; Ying J; Anfinrud P; Bax A
    Proc Natl Acad Sci U S A; 2018 May; 115(18):E4169-E4178. PubMed ID: 29666248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding.
    Kitahara R; Akasaka K
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3167-72. PubMed ID: 12629216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.
    Zhang Y; Kitazawa S; Peran I; Stenzoski N; McCallum SA; Raleigh DP; Royer CA
    J Am Chem Soc; 2016 Nov; 138(46):15260-15266. PubMed ID: 27781428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques.
    Naiyer A; Hassan MI; Islam A; Sundd M; Ahmad F
    J Biomol Struct Dyn; 2015; 33(10):2267-84. PubMed ID: 25586676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates.
    Gal M; Kern T; Schanda P; Frydman L; Brutscher B
    J Biomol NMR; 2009 Jan; 43(1):1-10. PubMed ID: 18982409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hypothesis to reconcile the physical and chemical unfolding of proteins.
    de Oliveira GA; Silva JL
    Proc Natl Acad Sci U S A; 2015 May; 112(21):E2775-84. PubMed ID: 25964355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
    Schuler B; Kremer W; Kalbitzer HR; Jaenicke R
    Biochemistry; 2002 Oct; 41(39):11670-80. PubMed ID: 12269809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New tools provide new insights in NMR studies of protein dynamics.
    Mittermaier A; Kay LE
    Science; 2006 Apr; 312(5771):224-8. PubMed ID: 16614210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical applications of hydrostatic pressure to refold proteins from inclusion bodies for NMR structural studies.
    Ogura K; Kobashigawa Y; Saio T; Kumeta H; Torikai S; Inagaki F
    Protein Eng Des Sel; 2013 Jun; 26(6):409-16. PubMed ID: 23525046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of partially folded states in protein folding/misfolding transitions by hydrostatic pressure.
    Ferreira ST; Chapeaurouge A; De Felice FG
    Braz J Med Biol Res; 2005 Aug; 38(8):1215-22. PubMed ID: 16082462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR as a tool to identify and characterize protein folding intermediates.
    Neira JL
    Arch Biochem Biophys; 2013 Mar; 531(1-2):90-9. PubMed ID: 22982558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of intermediate states of the human prion protein by high pressure NMR spectroscopy.
    Kachel N; Kremer W; Zahn R; Kalbitzer HR
    BMC Struct Biol; 2006 Jul; 6():16. PubMed ID: 16846506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.
    Sborgi L; Verma A; Sadqi M; de Alba E; Muñoz V
    Methods Mol Biol; 2013; 932():205-18. PubMed ID: 22987355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of motional averaging on the calculation of NMR-derived structural properties.
    Daura X; Antes I; van Gunsteren WF; Thiel W; Mark AE
    Proteins; 1999 Sep; 36(4):542-55. PubMed ID: 10450095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction Networks in Protein Folding via Atomic-Resolution Experiments and Long-Time-Scale Molecular Dynamics Simulations.
    Sborgi L; Verma A; Piana S; Lindorff-Larsen K; Cerminara M; Santiveri CM; Shaw DE; de Alba E; Muñoz V
    J Am Chem Soc; 2015 May; 137(20):6506-16. PubMed ID: 25924808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric kinetics of protein structural changes.
    Marchal S; Font J; Ribó M; Vilanova M; Phillips RS; Lange R; Torrent J
    Acc Chem Res; 2009 Jun; 42(6):778-87. PubMed ID: 19378977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein folding by NMR.
    Zhuravleva A; Korzhnev DM
    Prog Nucl Magn Reson Spectrosc; 2017 May; 100():52-77. PubMed ID: 28552172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metastable, partially folded states in the productive folding and in the misfolding and amyloid aggregation of proteins.
    Ferreira ST; De Felice FG; Chapeaurouge A
    Cell Biochem Biophys; 2006; 44(3):539-48. PubMed ID: 16679542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing residual structure in disordered protein States using nuclear magnetic resonance.
    Eliezer D
    Methods Mol Biol; 2007; 350():49-67. PubMed ID: 16957317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.